人类最快的飞行器----新视野号

 

迄今为止飞得最快的航天器、人类发射的第一个冥王星探测器“新视野号”,于去年7月,美国国家航空航天局(NASA...



迄今为止飞得最快的航天器、人类发射的第一个冥王星探测器“新视野号”,

于去年7月,美国国家航空航天局(NASA)的新视野号探测器以时速3万英里每小时掠过冥王星并对其进行了详细的拍摄,同时它也成了人类第一艘飞抵这颗冰冻星球的飞船。

在结束了与冥王星的短暂“亲密接触”后,新视野号收集了大量的数据,但其中的一半还正在传输回地球的路上。其实在给冥王星拍了定妆照后,新视野号的任务并没有结束,相反,它的使命才刚刚开始。

负责新视野号的主要研究者阿兰·斯特恩(Alan Stern)表示,眼下探测器的状态良好,其能源足够再飞行20年。

一说到太阳系,我们马上想到的是太阳和八大行星。实际上,随着地面和空间天文观测能力的提高,以及深空探测的进展,太阳系的边界扩展已经到了奥尔特云之外,与太阳的距离甚至达9.5万亿千米(1光年)左右。不仅观测到的天体数量大大增加,而且天体类型也从行星、小行星和彗星,到增加矮行星的分类。对于关系人类生存延续的太阳系,我们的了解远未清晰。

2014年岁末,各大影院正在热播《星际穿越》,黑洞、白洞、虫洞等天文学前沿概念被人们津津乐道,似乎人类将来有望通过虫洞快速抵达太阳系外的宜居星球。但实际上,星际飞行理论并没有突破性进展,深空探测在可以预见的将来还只能局限于对太阳系内天体的探测。

在经过数周时间的准备之后,2015年1月15日,人类第一个柯伊伯带探测器——“新视野号”将开始对冥王星及其卫星、以及其它柯伊伯带天体进行远距离观测。2015年7月14日,“新视野号”探测器

在这一天最接近冥王星。冥王星的发现者汤博的一部分骨灰搭载在“新视野号”上,也将亲赴现场。



至今为止拍摄到的最清晰的冥王星照片
【图1 冥王星降级前的太阳系九大行星】

一、发现太阳系里的新大陆

当人类登陆一片全新大陆的时候,往往都会被看到的场景所震撼。而今天,我们将登陆太阳系里的新大陆——柯伊伯带(Kuiper belt)。

我们的太阳系包含三个主要区域,一区为内太阳系,包括水星、金星、地球和火星,称为类地行星,均为岩石质天体;二区为外太阳系,包括木星、土星、天王星和海王星,称为类木行星,均为气液态巨行星。一区和二区之间以距离太阳2.3~3.3天文单位(1天文单位为日地平均距离,约等于1.5亿千米)的小行星带为界。三区为海王星以远,包括距离太阳约30~50个天文单位的柯伊伯带。在柯伊伯带之外,距离太阳5~10万天文单位还有一片由千亿颗冰冷天体组成的奥尔特云。



【图2 太阳系结构】



【图3 火星和木星轨道之间的小行星带】

需要指出的是,冥王星和柯伊伯带的发现过程十分艰难,是象征人类探索精神的重要事件之一。自1846年,海王星被首次发现以来,科学家一直在努力寻找新的海外行星(即海王星外的行星)。冥王星的质量仅有地球的0.21%,其质量不足于影响海王星的轨道,因此基本不可能根据天体力学的方法计算冥王星的轨道,大量的轨道计算后来被证明无一中的。由于无法预测冥王星可能经过的天区,大量的实际观测也无功而返。

直到1930年,年仅24岁的农家少年、罗威尔天文台新招聘的观测助理汤博,在寒冷的亚利桑那州高原上经过8个月艰苦的巡天式观测和仔细比对后(搜索会运动的天体是发现新行星的重要手段之一。因此,需要大量比对不同时间拍摄的照片,以发现运动的天体,但变星和彗星经常干扰这种比对工作),首次发现了冥王星。这是首次由美国天文学家利用美国的观测设备发现的新行星,是标志世界科学中心从欧洲大陆转移到美国的重要事件之一,美国人对此充满自豪,亲切地称冥王星为“美国行星”。

1978年,在冥王星的附近发现了冥卫一(卡戎,其质心实际上落在两个天体之外,因此并非真正绕冥王星公转。且两者质量相差不大,因此不能被视为冥卫,而是矮行星,与冥王星组成双矮行星系统)。而冥王星和卡戎所处的太阳系外缘一直被认为是空空荡荡的,没有其他大型天体。1987年,当时在麻省理工学院工作的天文学家大卫·朱维特不相信太阳系外围居然如此空旷。他和当时的研究生刘丽杏,经过对这一区域连续五年的观测,终于在1992年8月30日发现除冥王星和卡戎外的第一个柯伊伯带天体——直径250千米的小行星15760,半年后又发现第二个天体(181708) 1993 FW,从而证实柯伊伯带的存在。两人因发现柯伊伯带天体的贡献而获2012年度邵逸夫天文奖。现在我们知道,柯伊伯带是位于海王星轨道以远黄道面附近、散布着大量冰冻小天体的环形区域,是太阳系里的“冷库”。

冥王星直径2301千米,是柯伊伯带的主要天体,一直以来都被认为是太阳系九大行星之一。冥王星的轨道是一个非常扁的椭圆,远日点约为74亿千米,近日点为44亿千米,与太阳的平均距离约为59亿千米,是日地平均距离的40倍,绕太阳一圈需要漫长的248年。但从体积上,冥王星却是围绕太阳旋转的第十大天体。这是因为米高·布朗等三位天文学家2005年7月发现了太阳系中最大的矮行星、直径2326±12千米的阋神星(Eris)。阋神星质量约为地球质量的0.27%,比冥王星重约27%。它距离太阳97个天文单位,公转周期为557年,位于比柯伊伯带更远的太阳系离散盘,不属于柯伊伯带天体。除了阋神星,他们同时还发现了鸟神星。2天后发现妊神星。至此,柯伊伯带至少有冥王星、鸟神星、妊神星三颗矮行星。同一年,还发现了冥王星的两颗卫星冥卫二(Nix)和冥卫三(Hydra);2011年和2012年,先后发现冥卫四(Kerberos)和冥卫五(Styx)。除此之外,海王星外的大型天体还包括赛德娜、小行星225088、创神星、亡神星等。



【图4 目前已知的海王星轨道之外的主要天体】



【图5 冥王星和它的三颗卫星。图中向右分别为冥王星、冥卫一、冥卫二和冥卫三,哈勃空间望远镜2006年拍摄。】

由于阋神星的体积比冥王星大,曾经被考虑接纳成为太阳系的第十颗行星。现在柯伊伯带发现的天体数量已经超过1000个,实际的天体数量可能超过十万个,而且有一些是与冥王星大小相近的天体。如果全部接纳为行星的话,太阳系的行星家族将不断扩大;如果不接纳,天文学家就不得不对行星的定义做出明确界定。

2006年8月,国际天文联合会第26届大会通过第5号决议,更改了行星的定义:行星是绕恒星运转、质量足够大使之成球体、不是卫星的天体,必须具有清除轨道区域内大小相当天体的能力。柯伊伯带的这些天体虽然绕太阳运转、体积和质量较大而成球体,也不是行星的卫星,但由于不具有清空其轨道区域的能力,不能称为行星。行星的定义要求其质量在其轨道区域所有天体中占绝对优势,其清空轨道的能力和程度均比矮行星高5个数量级以上。冥王星由此被降级为矮行星,我们从小所熟知的太阳系九大行星被改写为八大行星。2008年,国际天文联合会再度将冥王星划分为类冥矮行星。从此,冥王星慢慢淡出公众视线,现在冥王星的正式名称是134340号小行星。

二、“新视野号”:太阳系新大陆的探索者

坎坷成行,一旦错失需再等百年

由于冥王星距离太阳和地球十分遥远,要探测它既要飞行很远的距离,又要克服寒冷而阴暗的困难,所以之前一直没有探测器探测过。

20世纪90年代末,NASA曾制定了一个名为“冥王星-柯伊伯快车”探测计划,原计划2004年12月18日发射,主要目的是探测冥王星、卡戎以及其他柯伊伯带天体。由于研制经费超支等原因,NASA宣布取消该计划。

消息一公布,立即遭到很多天文学家的强烈抗议。他们四处游说,希望再次启动冥王星探测计划。美国行星学会甚至发动了“拯救冥王星计划”的运动。最后,NASA的官员们终于被说服,于2000年12月20日宣布重新论证冥王星计划。他们拒绝采用原先提出的探测方案,改而向全球公开征集新的探测方案。这也是NASA历史上首次向全球公开征集太空计划方案。

NASA对新方案提出了两项苛刻的要求:一是要求在2015年前抵达冥王星,二是经费必须低于5亿美元。这是因为冥王星的轨道为椭圆形,绕日运行的周期长达248年,2015年时正好是探测冥王星的绝佳时机。一旦错过,这种快速抵达冥王星的机会只有百年之后才有了。而且想必官员们认为,为一个太空探测计划等15年,已经是公众耐心的极限了。

从宣布重新论证到最迟的发射时间,留给科学家们只有4~5年时间。2004~2006年是发射冥王星探测器的最后机会。为了争分夺秒地研制探测器,NASA留给新的冥王星计划的方案设计时间只有3个月,截止到2001年3月19日。最终,由西南研究院和霍普金斯大学应用物理实验室联合团队的设计方案脱颖而出,在诸多方案中最终获胜,总预算为4.88亿美元。新方案能发回比原来的“冥王星-柯伊伯快车”计划多10倍的观测数据。如果赶在2006年2月以前发射,可以确保在2015年夏天抵达冥王星。2001年12月,NASA宣布重启冥王星计划,探测器名为“新视野号”。

“新视野号”原定美东时间2006年1月17日13时24分在佛罗里达州卡纳维拉尔角空军基地第41发射台发射,但因地面强风和负责该项目的约翰霍普金斯大学应用物理实验室的控制中心突然停电的原因,两度推迟升空。至1月19日14时,卡纳维拉尔角上空云层逐渐散去,气候条件适合发射,“新视野号”比原定时间推迟半小时后发射升空。45分钟后三级火箭脱离,“新视野号”脱离地球引力,朝木星飞去。



【图6 “新视野号”由宇宙神5号火箭发射升空】

到太阳系新大陆去“考古”

在“新视野号”任务论证和发射时,冥王星还被视作行星,作为太阳系中唯一没有被航天器探测过的行星,“新视野号”被赋予重要的象征意义。随着天文学家在柯伊伯带不断获得新的观测发现,“新视野号”的主要任务从冥王星扩展到整个柯伊伯带:

近距离飞越冥王星及其已知的五个卫星。虽然,哈勃空间望远镜此前的观测没有发现冥王星有新的卫星或环带系统,但如果它们太过暗弱,从遥远的距离上是很难被发现的。因此,“新视野号”将探测冥王星是否存在未被发现的卫星,调查冥王星是否拥有环带系统,观察冥王星表面是否存在撞击坑或撞击坑的多少,判断柯伊伯带天体相互碰撞的几率。

考察柯伊伯带的其他天体。柯伊伯带的天体自太阳系形成之初已存在,是太阳系各大行星形成后的残渣,记录着太阳系最初形成时的历史,有助于理解太阳系和地球生命的起源。如果不了解柯伊伯带,就很难理解太阳系的起源。对于太阳系里的这片新大陆,“新视野号”首席科学家艾伦·斯特恩指出:“太阳系中的这一区域存在诸多谜团。探索冥王星和柯伊伯带就像是在太阳系新大陆进行的考古发掘工作。通过考察可以窥探到太阳系行星形成的最初状态。”

十八般兵器

科学仪器是“新视野号”的“眼睛”。“新视野号”携带了7台重30千克的科学仪器。其中光学设备有3台。分别是:远程勘测成像仪(LORRI)、可见-红外成像光谱仪(Ralph)、紫外成像光谱仪(Alice),分别拍摄可见光、红外和紫外图片。另外4台仪器分别是:太阳风测量仪(SWAP)、无线电科学实验仪(REX)、能量粒子谱仪(PEPSSI)、学生尘埃计数器(SDC),分别用于测量冥王星附近和表面的太阳风、大气、能量粒子和尘埃。



【图7 “新视野号”携带的科学仪器示意图】

(1)可见-红外成像光谱仪(Ralph): 拍摄冥王星及卡戎的表面地形,提供高清晰影像照片,分析表面物理现象和物质组成,绘制地形图,了解冥王星及卡戎的历史。仪器分为两部份,一为多光谱可见光相机(MVIC),另一为红外光谱仪(LEISA),两者共同使用一个6厘米镜头,用以调校焦距,收集影像。

可见光相机使用电荷藕合装置(CCD),是近年所有外太空探测器的标准设备。天体目标的影像通过镜头后,再经过四层滤镜,在电荷藕合器成像。滤镜分别包括一般用途的蓝、绿、及近红外滤镜,以及专用于观测甲烷的滤镜。

红外光谱仪测量热辐射光谱,获得物质组成信息。根据哈勃望远镜的观测结果,冥王星表面以甲烷、氮、一氧化碳及冰为主,而卡戎则主要由冰组成。当探测器接近它们时,透过红外光谱仪观察,可能会发现更多的其他物质。

(2)远程勘测成像仪(LORRI): 有一个直径20.8厘米的镜头,同样以CCD成像,但没有滤镜和活动部件,结构比Ralph简单得多。目的是为探测器提供详细的空间信息,即探测器在飞行途中的精确位置。通过观测特定星体,比较观测资料,得出探测器在途中某一点的精确位置及相位,从而控制探测器进行相应的轨道调整。当飞临冥王星时,远程勘测成像仪同时拍摄冥王星表面影像,分辨率大致相当于标准足球场面积。

(3)紫外成像光谱仪(Alice):测量由冥王星及卡戎辐射或反射的紫外线,获得不同波长的图像,研究它们的大气成分、表面物质组成和温度。紫外成像光谱仪有两种工作模式:1)气体辉光探测模式,当探测器接近及离开冥王星时采用这种模式,目的是直接测量由冥王星及卡戎的大气辐射或反射的紫外线,大多数时间采用这种工作模式。2)掩星测量模式,当探测器飞越冥王星之后,进入冥王星日蚀阴影区时,即被冥王星星体遮掩太阳光的地方,通过测量透过冥王星大气的太阳光,获得冥王星大气的成份、浓度和温度分布。

(4)太阳风测量仪(SWAP):主要用于测量冥王星附近的太阳风特性,分析从冥王星大气中逃逸出来的物质和逃逸速率,寻找冥王星周围的磁层。仪器内部有一个低能等离子体探测器,测量范围为30~7700电子伏。

(5)无线电科学实验仪(REX):当“新视野号”位于冥王星的背面时,地球上的控制人员开始向冥王星发射无线电波。由于无线电信号在穿越冥王星大气层时会产生一定的折射、畸变和时延,那些穿过冥王星大气层的无线电波被飞船上的2.1米直径高增益天线接收后,无线电科学实验仪就会比较穿越冥王星大气前后的信号特征,分析出大气中气体分子的成分、密度、温度及大气结构,绘制冥王星大气层从高空到表面的温度和密度曲线。

当探测器近距离飞掠冥王星时,无线电科学实验仪可以切换到辐射探测模式,直接测量冥王星发射的微弱的微波辐射,精确测量冥王星向阳面和背阴面之间的温度变化。

(6)能量粒子谱仪(PEPSSI):该仪器由带电粒子探测器组成,可以测量质子、离子、电子等带电粒子的成分和密度等特性。通过探测大气层顶部的中性粒子被太阳风激活而逃离大气层的现象,推算大气化学成分。

(7)学生尘埃计数器(SDC):由科罗拉多大学的学生在专业航天人员的指导下制造的,主要用于测量整个飞行过程中星际尘埃粒子对“新视野号”的撞击情况,包括粒子的大小、数量、撞击飞船时的方向和飞行轨迹等。这些尘埃粒子主要来自从彗星逃逸的物质和柯伊伯带天体相互碰撞产生的残片。

三、星际飞越50亿千米

柯伊伯带的天体主要包括冰冻的小行星、彗星和矮行星,它们是太阳系演化的遗迹,记录着太阳系形成之初的信息。

1992年,人类才艰难地首次观测到除冥王星外的第一个柯伊伯带天体——直径250千米的QB1,那时我们还不知道是否存在柯伊伯带。而现在,探测柯伊伯带的深空探测器新视野号已经飞抵那里亲临探测。那么,新视野号是如何设计的?怎样才能破解太阳系最初的秘密呢?

“新视野号”发射时的质量为453千克。探测器外形像一把短锹,其中锹把是它的核电站,锹身是探测器本体,锹身上顶着的大锅则是它的天线(图1)。探测器本体为三角形,长2.1米,最宽处约2.7米,高0.7米,大小相当于一架钢琴。



图1 “新视野号”的外形像一把短锹。

“新视野号”探测器的通信采用X频段,包括一副直径达2.1米的高增益碟型天线、一副中增益碟型天线和两副低增益宽波束天线。“新视野号”的天线比大多数深空探测器要大得多,这是由于距离遥远,信号微弱,所以需要一个很大的天线来接收和发送数据和信号。

“新视野号”有两种姿态控制模式,在科学探测阶段采用三轴稳定和自旋稳定模式;在巡航阶段的休眠期和轨道修正机动时采用自旋稳定,额定转速为5次/秒。

“新视野号”的推进系统由16个单元肼推进器组成,其中4个推力为4.4牛的推进器主要用于修正飞行轨道,12个推力为0.8牛的推进器主要用于使探测器自旋加速或减速。“新视野号”共携带77千克推进剂,用于在航行过程中修正轨道或改变航向。在飞赴冥王星的过程中,它利用木星引力进行辅助加速;在抵达冥王星的时候,它采用飞越方式探测,因此在靠近冥王星时无需减速使之进入环绕轨道。这两个因素使得“新视野号”携带的燃料比较少。

“新视野号”为什么不环绕冥王星进行长时间观测呢?主要原因有两个,一是由于探测器的飞行速度必须非常快,这样才能确保在9.5年内到达距离地球50亿千米的冥王星。如果“新视野号”要进入冥王星轨道,必须将速度降低90%,这就需要多1000倍的燃料消耗,而“新视野号”携带的燃料不足以供减速和进入环冥王星轨道之用。二是“新视野号”一旦进入环绕冥王星的轨道,就无法将来脱离冥王星引力去探测其他的柯伊伯带天体。

2014年12月7日,在行星际飞行了48亿千米的“新视野号”被成功唤醒,此刻距离地球46.6亿千米、离抵达冥王星还有2.6亿千米。

2015年1月15日,当“新视野号”距离冥王星约100万千米时,探测器上的各种设备开始工作,对冥王星和卡戎进行全方位的探测并传回探测数据。以光速传输的探测数据传到地球需要4小时25分钟。当距冥王星16万千米时,探测器上的相机开始绘制第一批地图,并在随后的3个月里不断拍摄照片和测量光谱。如果那时冥王星的大气是冻结的,“新视野号”还能够观测到季节的变化。

“新视野号”与冥王星的最近距离将为9600千米;与卡戎的最近距离为2.7万千米,持续时间约为半小时。届时,探测器将用可见光和近红外相机拍摄最高分辨率为60米、迄今为止最清晰的冥王星和卡戎照片。图像质量远远超过哈勃空间望远镜拍摄的冥王星(图2)。如果幸运的话,“新视野号”有望拍摄到冥王星上的云层或喷发的冰火山。虽然科学家推测冥王星表面可能存在这些现象,却从未被证实过。当近距离飞过冥王星时,“新视野号”采集的数据量异常庞大,根本来不及向地球回传。因此只能暂时存储这些数据,并在随后的1年多时间里陆续发送。

“新视野号”对冥王星和卡戎的飞越观测将持续6个多月,2015年7月之后逐渐远离(图3)。在飞离冥王星和卡戎时,“新视野号”还将调转镜头回望,利用低太阳照射角造成表面地形明暗的优势,求证冥王星和卡戎表面是否平坦,是否拥有类似彗星那样的“尾巴”,是否拥有环带,是否有未被发现的卫星。



图3 “新视野号”飞越冥王星和卡戎示意图。

在完成对冥王星及其卫星的飞越考察后,“新视野号”将在2017~2020年探测柯伊伯带的其它天体,其中的2个直径为40~90千米,这一阶段可能持续5~10年。如果一切顺利,“新视野号”的寿命将在15年以上。

四、全民参与的科普盛事

深空探测的目标大多远离地球,开展深空探测一方面将牵引航天技术的提升,另一方面将扩大人类的认知边界。与商业航天和应用航天不同,深空探测是用纳税人的钱开展的科学探测活动,是全人类的共同使命。因此,在深空探测的任务实施中,应想方设法吸引公众的关注,尽可能让普通人获得亲身参与感,以争取民众支持。在这一过程中,勇敢探索未知世界的科学精神被润物无声地传递到每一个人,从而提升公众的科学素养。

2005年,“新视野号”任务团队发起了一个问候冥王星的征集活动,他们设立了一个网页,全世界天文爱好者只需要通过访问这个网页,就可以将自己的名字输入电子卡片内,让自己的问候搭载在“新视野号”,一起飞向柯伊伯带。活动期间共征集到了超过43万人的问候,这些问候被刻在光盘上,放入探测器内。在完成探测任务后,“新视野号”上的计算机将会被重置,上传“同一个地球,来自‘新视野号’的问候”,上面收集了有关地球的各种信息,包括世界各地的人们发来的照片、声音、文字,甚至是计算机程序。“新视野号”将带着这些来自地球的人类信息飞向遥远的星际空间。

五、行星际超远距离飞行宝典

由于冥王星远离太阳,飞往这些遥远天体的探测器需要具备一些基本条件:(1)寿命长;(2)必须借力行星飞行;(3)采用核能发电机。

长寿秘诀:长期休眠为远征养精蓄锐。为实现长寿命,不仅几乎所有的探测器系统都要有备用设备,以确保系统出现问题时及时启用备份系统;还有一个重要的手段,就是让探测器长期处于休眠状态,为了避免由于长期不活动,腿脚变得不利索,也为了避免探测器一睡不醒,地面控制人员需要每隔一段时间叫醒它,让它锻炼锻炼筋骨。

自2006年1月20日发射升空后,除了用4个月探测木星及其卫星,“新视野号”上的绝大部分仪器处于休眠状态,以节约能源,延缓设备老化,特别是降低地面维护和运营人员的开支。不过地球上的控制人员仍密切关注新视野的运行情况,每隔几个月,探测器上的设备都会定期被唤醒以接受例行检查,进行轨道校正和仪器校准,以保障航线正确和设备正常。此外,“新视野号”还会每周发回一个信号,这个信号被称作“绿色信号灯”,目的是让控制人员知道它仍然活着。

2014年8月,地面对“新视野号”进行了一次例行检查,上传指令要求它按计划于12月7日苏醒。12月7日,地面收到了它从遥远的深空传来的回复,确认此指令已经得到执行。这次唤醒标志着“新视野号”此行的主要目的——探测冥王星及其卫星的任务正式开始了。从此,“新视野号”将一直保持“清醒”状态,直到2015年7月14日,它抵达距离冥王星最近的位置。

唤醒后的数周内,地面团队全面检查了探测器的身体状况,测试了在飞越冥王星时需要用到的各种程序,确保探测器各系统正常工作。结果表明,“新视野号”现在很健康,正安静地在深空漫游。

2015年1月15日,“新视野号”上的所有系统被唤醒,开始对冥王星和卡戎进行探测。随着探测器的逐渐靠近,冥王星和卡戎将从此前由望远镜中观测的小亮点,展现出越来越多的细节。届时,人类将首次获得它们的标准照。

高速秘诀:木星借力成就迄今最快的航天器。发射以后,“新视野号”直接进入了地球和太阳的逃逸轨道,在最后完成加速关闭引擎时相对于地球的速度是16.26千米/秒,相当于每小时58,536万千米/小时,接近第3宇宙速度,成为人类有史以来以最快发射速度离开地球的高速飞行器。

由于超高速飞行,“新视野号”在发射后9小时就飞过了月球。而阿波罗载人飞船飞往月球用了3天,嫦娥一号奔月飞行用了13天半,嫦娥二号奔月用了5天。

13个月后,“新视野号”于2007年2月底抵达木星,而探测木星的伽利略探测器飞抵木星用了6年4个月。“新视野号”离木星最近处约227万千米的位置,其飞抵木星的目的也是为了加速。目的是借助木星的巨大引力进一步提速到7万~7.5万千米/小时,加速飞向遥远的冥王星。

利用飞越木星的机会,“新视野号”顺便对木星和它的20多个卫星进行了为期4个多月的考察。主要探测了木星的大气结构及风暴、木星及其卫星的环带结构,通过带电粒子流和极光遥感测量探测研究木星磁层。探测器还收集了木星主要卫星的大气层、物质组成、表面结构等信息。



图4“新视野号”飞越木星时拍摄的木星和木卫一的合影。

抗冻秘诀:太空核能确保航天器在冷库中生存。由于冥王星和柯伊伯带远离太阳,太阳辐射强度只是地球上的千分之一,太阳光要经过4个多小时长途跋涉才能来到冥王星。“新视野号”所需的电力无法通过太阳能电池发电提供。为此,“新视野号”探测器携带了一台放射性同位素温差发电机。



图5 黑色圆柱体为放射性同位素温差发电机。

许多人谈核色变,其实40多年来,核能发电机已经在25次太空探测中使用,其中包括6次阿波罗载人登月,2次探测木星和土星的飞行,2次探测火星的飞行。
核能发电机位于“新视野号”的尾部,内装10.9千克二氧化钚,其中的钚-238衰变时会释放出热量,通过温差发电提供稳定的电力。所有的探测设备都将依赖这台核能发电机供电,其产生的电力相当于一对100瓦灯泡。
由于担心太空遭受核污染,在“新视野号”发射前夕,曾有数十名抗议者自发组织起来进行抗议。但科学家们解释,“新视野号”探测器的燃料箱非常坚固,核能发电机所用的燃料被封装在特制的球形防火陶瓷中,这种陶瓷有抗分解能力,不易与其他物质发生化学反应,而且外面的密封箱完全能经受住坠地撞击或空中爆炸的冲击,发生意外灾难的几率很小,即使发生意外,核燃料外泄的可能性微乎其微。为了应对可能的风险,NASA和美国能源部做了详细的预案,组建了16个移动跟踪小组,部署了33个空气取样装置和监控器,以检测可能的核辐射。

六、破解太阳系最初的秘密

柯伊伯带位于太阳系的边缘,寒冷而阴暗,探测难度很大。这些遥远的冰冻天体究竟有何吸引力,值得我们长期守候并努力探索呢?

首先,柯伊伯带作为太阳系的新大陆,“新视野号”的发现将极大地改变我们对太阳系结构的认识。柯伊伯带是短周期彗星的“老家”,而奥尔特云是长周期彗星的“老家”。由于彗星经过太阳附近时质量会消耗掉,若没有这两个彗星老巢的不断补充,经过漫长的太阳系演化历史,我们可能早就看不到彗星了。柯伊伯带和奥尔特云这两大区域至今还没有被航天器探测过,我们对太阳系新大陆的广阔空间仍知之甚少,对太阳系结构的认识仍然不够清晰。我们一直把冥王星视为太阳系中一颗未长大的“侏儒”行星,但现在知道冥王星是通往柯伊伯带这片全新大陆的大门。“新视野号”的主要目标就是探测以冥王星及其卫星为代表的柯伊伯带天体,将这片区域的场景清晰地展现出来。

其次,冥王星及其卫星作为行星胚胎,对研究行星的形成具有重要价值。太阳系不仅有行星,还有数以亿计的小天体,包括小行星、矮行星、彗星,主要存在于小行星带、柯伊伯带、离散盘、奥尔特云。从科学角度而言,深空探测就是探测太阳系的各种天体类型和主要区域,如同盲人摸象般逐渐了解太阳系的全貌,所有的深空探测任务的终极科学目标都是为了回答太阳系起源、行星的起源这些关键问题。

2014年8月,罗塞塔号刚刚探访了同样来自柯伊伯带、飞越到太阳附近的楚—格彗星,搭载的菲莱着陆器还实现人类首次登陆慧核表面,大大加深了对彗星的认识。除彗星外,柯伊伯带还有数十颗直径200~2000千米不等、由岩石和冰块组成的天体,其中以冥王星及其卫星最为典型。我们知道,太阳系起源于一个弥漫着气体和尘埃的星云团。由于快速旋转,星云逐渐凝聚形成星子,星子之间相互碰撞、吸积增大而形成行星胚胎,进一步彼此吸引增大形成数量较少、质量较重的原始行星。行星形成后,太阳星云的残留物形成了数量众多的小天体。而矮行星就是没有长大成行星的“侏儒”行星。由于远离太阳系的柯伊伯带天体稀疏,受到的撞击、太阳辐射等太空风化较弱,可以保存更为原始的状态。因此,柯伊伯带的天体相当于在太阳系的“冷库”中保存了46亿年,保留着太阳系形成时的原始状态,对了解太阳系的起源具有极大的作用。通过“新视野号”对冥王星、冥卫一等柯伊伯带天体的探测,将有助于揭示行星形成的关键环节。

人类已经对岩石行星(地球、金星、水星和火星)和气液态巨行星(木星、土星、天王星和海王星)进行过多次探测,但在“新视野号”之前还没有探测器对柯伊伯带的冰态矮行星进行过探测。因此我们对矮行星这一新的天体分类的认识是严重不完整的。而“新视野号”的探测将填补这一重要的空白,完善了我们对于太阳系天体类型的知识。

再次,随着深空探测的进展,我们对太阳系的认识不断深化,太阳系的边界不断拓展。这些科学成果改变了人类的知识边界,进而影响和改造着我们的世界观。在古希腊时代,我们认为地球是宇宙的中心、太阳、月球都是绕着地球运转的行星;在哥白尼之后,人类逐渐接受太阳是太阳系的中心,认为行星就是围绕太阳运转的天体,因此地球是行星而月球不是。后来大量小行星的发现迫使人们修改了行星的定义,认为行星必须质量足够大,大到能通过自转成球体。再后来,发现了许多与月球大小相近的谷神星、智神星、阋神星、妊神星、婚神星等,天文界面临着再次选择,要么将它们统统纳入行星,要么排除它们。必须承认的是,我们对柯伊伯带的小天体(除了矮行星以外,还包括彗星和小行星)还了解得很少,甚至是才处于大发现的初期。我们不清楚柯伊伯带的小行星与火星和木星之间的小行星有何不同。随着深空探测获得的新发现,我们将不得不再次修改行星的定义。

最后,远征太阳系边缘的深空探测将显著牵引航天技术实现新突破。“新视野号”奔赴柯伊伯带的旅途长达9年,为延长探测器的寿命和减少地面维护的费用,探测器有2/3的时间是在休眠中度过的;为实现早日抵达冥王星,“新视野号”先飞抵木星开展飞越探测,并借助木星引力进行加速;由于距离遥远,地面发出的指令要4.5小时之后才能被探测器接收到,数据传输链路和测控精度要求均大大提高;柯伊伯带寒冷而黑暗,太阳辐射强度仅为地球上的千分之一,冥王星表面温度低至零下212~234摄氏度,因此必须研发高效核能系统以提供飞行动力和保温。“新视野号”在太阳系远征中涉及的超长寿命航天器设计、行星借力飞行、超远距离测控通信和数据传输、太空核动力和能源供应等关键技术,将是中国航天努力突破的重要领域。



本文选自作者:郑永春,首届香江学者,国家天文台青年创新促进会负责人,小ai对本文做了部分删改

更多精彩欢迎关注


    关注 newscience


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册