串行通信口防雷电路设计参考

 

智能电表等系统已经广泛地应用到工业和生活的领域。在电表中使用自动抄表技术通过通信端口读取数据,而且大部分情...



智能电表等系统已经广泛地应用到工业和生活的领域。在电表中使用自动抄表技术通过通信端口
读取数据,而且大部分情况采用远程读数方式。对于电表应用来说既安全又节省了时间和金钱。实现该技术的关键是确保通信链路安全可靠。由于 RS-485

标准具有长距离传输(1200 米以上),最大传输数率可以达到 10Mbps,且高信号噪声印制。同时,RS-485 电路具有控制方便,成本低等优
点,使多点连接成为可能。因此,RS-485 成为智能电表的标准通信接口。

但 RS-485 口传输线通常暴露于户外,因此极易因为雷击等原因引入过电压。而 RS-485 收发
器工作电压较低(5V 左右),其本身耐压也非常低(-7V~+12V),一旦过压引入,就会击穿损坏。在有强烈的浪涌能量出现时,甚至可以看到收发器爆裂,线路板焦糊的现象。因此防雷击保护成为 RS-485 接口设计必须要考虑的。

通常,如图所画,使用 PPTC 和 TVS 作为 RS-485 的防雷击保护



当雷击发生时,感应过电压由 A/B 线引入,经过 PPTC,然后 GDT 作为初级共模防护,通常
GDT 可以承受 10KA(8x20us)浪涌冲击。

之后残压已经大大降低到 1KV 以下,然后 TVS 作为二级
保护进行共模/差模保护,到收发器的电压被钳制在 12V 以下,同时,通过 A/B 线上的上拉电压可
以保证 A/B 线上的电压保持在高电平。

而实现对收发器的浪涌保护。通常,对于 4KV 以下过电
压,可以省去初级保护—--GDT。单用 TVS 就能实现浪涌保护的要求。当 RS-485 总线与电力线
(例如 220VAC)搭接短路时。A/B 线上的 PPTC 可以提供短路保护。

但这种传统方式有问题需要考虑

1:GDT 浪涌击穿电压较高,这就意味着后面的电阻值比较大。这可能会影响传输距离减少

2:TVS 的漏电流较高,以 SMBJ6.0CA 来讲大致在 800uA 左右。这样会影响点对点通讯
的可靠性

3:PPTC 的响应速度较慢,因此在电力塔接时,可能会造成 TVS 被交流击穿 电表 RS-485 接口保护。

因此综上所述,是否有更好的 RS-485 防雷保护方案呢?

这里,我们提出了自己的一种方案来满足更高可靠性的要求。

众所周知,TVS 是半导体保护器件,具有响应速度快,可靠性高的优点。但它是
Clamping 保护模式。其残压会比较高

而我们的 Sidactor 作为半导体器件同样具有响应速度快,可靠性高的优点。但它是
Crowbar 保护模式。其导通以后保持电压低,同时还具有抗浪涌能力强,耐搭接能力强特
点。

请看下面图显示的 TVS 与 Sidactor 的工作模式。



SIDACtor简介: 双向顺态过电压保护器。SIDACtor是一种带负阻或正阻特性的新型浪涌吸收器,击穿电压为27~540V,导通电压仅3~4V,可通过的浪涌电流为50~100A。与气体放电管、TVS和MOV等其它类型的瞬态电压保护器比较,SIDACtor具有导通阻抗和开通电压低、响应速度快、电流通量大及可靠性高等特点。因此,它是一种全能的电压保护器件。

SIDACtor工作原理:SIDAC是一种二端半导体器件,其内部结构与双向晶闸管十分相似,但是没有触发门极,是电压自触发器件。SIDAC的工作状态如同一个开关。当电压低于断态峰值电压VDRM时,其漏电流IDRM极小(小于微安量级),为断开状态。当电压超过其击穿电压VBO时,产生瞬间雪崩效应。该雪崩电流一旦超过开关电流IS,即进入雪崩倍增,器件的阻抗骤然减小,电压降为导通电压(V


    关注 电子工程专辑


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册