摩尔定律何去何从之一:摩尔定律从哪里来?摩尔定律到极限了吗?

 

摩尔定律何去何从之一:摩尔定律从哪里来?摩尔定律到极限了吗?...







50年前,Gordon Moore提出了集成电路特征尺寸随时间按照指数规律缩小的法则,被称为“摩尔定律”。在50年间,半导体行业蓬勃发展,人类社会飞速进入信息时代,同时在半导体工业界也诞生了一大批巨无霸企业,比如Intel和Qualcomm等等。近来,随着半导体制程特征尺寸缩小越来越困难,摩尔定律是否已经到达极限成为半导体业界乃至整个社会所关注的问题。我们打算在接下来的几篇文章里探讨摩尔定律的源头,现状以及未来。

谁在推动摩尔定律?

从1958年Jack Kilby发明的第一个只包含一个双极性晶体管、三个电阻和一个电容的集成电路到现如今动辄十亿个晶体管的处理器芯片,短短五十几年的时间集成电路产业以历史上前所未有的节奏飞速发展。2014年,半导体生产商共生产制造了250 quintillion(十亿个十亿,十的18次方)个晶体管,也就是说去年一年中,平均每秒生产出8 trillion(万亿)个晶体管。更重要的是作为目前人类最尖端的科技成果之一,各种各样的集成电路不停地升级降价、再升级再降价从而以相对低廉的价格让这项成果为普罗大众所共同享有。这一产业著名的经验法则摩尔定律也因此为大家所熟知。

曾听过一个不恰当的比方:如果汽车工业也是按照半导体产业的玩法,不妨想象一下您可以用多么低廉的价格购买到性能神到飞起的汽车。摩尔定律以平均每年46%的“成长”速率往前推进,而洲际旅行的速度从1900年大型远洋轮船的35公里每小时左右,上升至1958年波音707的885公里每小时,平均涨幅为每年5.6%。但在之后很长一段时间里巡航速度基本上保持不变,波音787只比707快了几个百分点。从1973年到2014年,美国新乘用车(即使在排除SUV和皮卡之后)的燃料转换效率每年仅提升2.5%,从13.5升到37英里每加仑(即油耗从17.4升每百公里降到6.4升每百公里)。

摩尔定律背后的逻辑是:半导体行业需要以一个合适的速度增长以实现利润的最大化。上世纪60年代,摩尔发现半导体晶体管制程发展的速度对于一个半导体厂商至关重要。随着制程的进化,同样的芯片的制造成本会更低,因为单位面积晶体管数量提升导致相同的芯片所需要的面积缩小。所以制程发展速度如果过慢,则意味着芯片制作成本居高不下,导致利润无法扩大。另一方面,如果孤注一掷把所有的资本都用来发展新制程,则风险太大,一旦研发失败公司就完蛋了。摩尔发现当时市场上成功的半导体厂商的制程进化速度大约是每年半导体芯片上集成的晶体管数量翻倍,于是写了著名的论文告诉大家这个发展速度是成本与风险之间一个良好的折中,半导体业以后发展可以按照这个速度来。摩尔定律背后的终极推动力其实是经济因素。时至今日,摩尔定律“投资发展制程-芯片生产成本降低-用部分利润继续投资发展制程”的逻辑对于半导体巨头依然有效。Intel的执行副总Bill Holt在ISSCC 2016的主题演讲中比较了两种情况下的处理器芯片生产成本,一种是十年内每年都利用部分利润根据摩尔定律的速度发展新制程(下图左),另一种是在十年内一直使用相同的旧制程(下图右)。比较的结果是,十年内按照摩尔定律发展新制程所生产的芯片成本与一直使用旧制程生产的芯片成本相比低了六成。所以说推动摩尔定律的是经济学。





芯片成本对比:制程进化(左)或不进化(右)

摩尔定律由经济因素驱动,有意思的是由于晶体管的性能也会随着特征尺寸缩小而改善,所以随着半导体工艺制程的进化芯片的性能也以指数的速度增长,从而带动电子产品性能大跃进式发展,电子市场一片生机勃勃。昨天给家里买电脑选什么奔腾赛扬的感觉还在眼前,今天新买到的手机上就已经是4核8核傻傻分不清楚了,这是多美好的时代啊!然而,在讨论摩尔定律时我们不仅要看到它带来的技术革新,更要记住它的经济学本质。

时至今日,摩尔定律已经不仅仅是一个经验规律,而是成为半导体行业的发展蓝图,或者说是半导体芯片市场商业模型(business model)的重要组成部分。显然,制程进化速度的最优值显然是会随着市场和技术条件而改变的(比如如果有外星人免费提供黑科技那么特征尺寸瞬间变成原来的1/10也没问题),而摩尔在五十年前观察到的“每两年特征尺寸减半”的经验性最优值也并非物理定律不可能永远有效。换句话说,摩尔定律需要有人来不停地维护和修正。那么维护摩尔定律的人有时谁呢?这个维护的人就是ITRS,全称International Templar Research Society中文是国际圣殿骑士研究协会,该协会会在刺客信条最新作中登场… 开个玩笑,ITRS全称是International Technology Roadmap for Semiconductor,是由半导体行业自发组织来讨论合适的制程发展速度。各大半导体制造厂商(比如Intel,TSMC,Samsung等)的核心技术是保密的,但是发展的规划是经由ITRS讨论后决定的,而且该规划是公开在ITRS网站(International Technology Roadmap for Semiconductors)上的。这样做可以更好地指导整个半导体工业界健康地发展。



ITRS网站 International Technology Roadmap for Semiconductors

在摩尔定律提出至今,制程进化的速度已经被修正了两次。最早摩尔1965年在Electronics Magazine上提出的速度是每年晶体管数量翻倍,到了1975年摩尔本人在IEDM(国际电子器件大会)上修正为每两年晶体管数量翻倍。之后每两年翻倍的发展速度维持到大约2013年,之后ITRS将未来蓝图修正为每三年晶体管数量翻倍。

摩尔定律到极限了吗?

在摩尔定律提出的前三十年,新工艺制程的研发并不困难,但随着特征尺寸越来越接近宏观物理和量子物理的边界,现在高级工艺制程的研发越来越困难,研发成本也越来越高。如果工艺制程继续按照摩尔定律所说的以指数级的速度缩小特征尺寸,会遇到两个阻碍,首先是经济学的阻碍,其次是物理学的阻碍。

经济学的阻碍是,随着特征尺寸缩小,芯片的成本上升很快。芯片的成本包括NRE成本(Non-Recurring Engineering,指芯片设计和掩膜制作成本,对于一块芯片而言这些成本是一次性的)和制造成本(即每块芯片制造的成本)。在先进工艺制程,由于工艺的复杂性,NRE成本非常高。例如FinFET工艺往往需要使用double patterning技术,而且金属层数可达15层之多,导致掩膜制作非常昂贵。另外,复杂工艺的设计规则也非常复杂,工程师需要许多时间去学习,这也增加了NRE成本。对于由先进制程制造的芯片,每块芯片的毛利率较使用落后制程制造的芯片要高,但是高昂的NRE成本意味着由先进制程制作的芯片需要更多的销量才能实现真正盈利(如下图所示)。这使得芯片设计和制造所需要的资本越来越高,而无力负担先进工艺制程的中小厂商则不得不继续使用较旧的工艺。这也部分地打破了摩尔定律 “投资发展制程-芯片生产成本降低-用部分利润继续投资发展制程”的逻辑。



新旧工艺的毛利润-销量关系图。新一代工艺的单位销量毛利润和NRE成本(NRE2)都较上一代工艺要高,且新一代工艺的收支相抵所需要的销量(BE2)也比上一代工艺(BE1)要高

至于物理学的障碍主要来源于量子效应和光刻精度。当特征尺寸缩小到10nm的时候,栅氧化层的厚度仅仅只有十个原子那么厚,在那个时候会产生诸多量子效应,导致晶体管的特性难以控制。例如量子隧穿效应会非常严重,导致晶体管漏电非常严重。晶体管的漏电是一个非常严重的问题:移动电子产品在很多时间里会处于待机的状态,而待机功耗是由漏电决定的。漏电高则会造成电池更快耗尽。另一个限制是光刻精度。光刻精度主要由光的波长决定。为了得到更好的光刻精度,我们可以用波长较小的紫外光以及对紫外光敏感的光刻胶,当然这会带来更高的成本。三星总裁在刚刚2015年的ISSCC上发表主题演讲表示:直到5nm不会有根本性困难。那5nm之后怎么办?成本居高不下的问题又该怎么解决?摩尔定律是不是真的要终结了呢?让我们看看半导体业界大佬们的观点。

首先是IEEE Spectrum对摩尔老人家的专访:

Rachel Courtland(IEEE Spectrum副主编):您在过去曾多次预测摩尔定律的终结,您现在认为它还能持续多久?

Gordon Moore: 恩,我从来没有准确的预测它的终结,我说过我无法看到比下一个世代(的芯片)更远的未来。那儿似乎有一堵穿不透的墙,但这堵墙一直在往后退。我很惊讶于工程师们有如此强大的创造力能够在看起来只能完全停滞的情况下找到新的出路。...我记得一次霍金在硅谷的时候,有人问他怎么看集成电路技术所面临的极限。虽然不是他的研究领域,但他总结了两点:光的有限速度和材料的原子特性。我觉得他是对的。我们已经接近原子极限,而且我们也利用了一切优势来促使速度提升,但是光速会最终限制性能。这些基本的问题目前看来依然没有很好的解决方案,而在接下来的几个世代中我们却将要直面它们。

R.C.: 您是否认为我们对电子类产品的消费习惯会因为摩尔定律的终结而改变?

G.M.:我不觉得会改变太多。只要有新的产品有成长的能力,它们会很快的迫使旧产品更新换代。当我们是在想不出还有什么新的花样可以玩时,人们可能会觉得评不需要每年都换新的,可能一个电子产品可以用四五年。这将会使整个产业的成长明显放缓,但是我认为这样的事发生是不可避免的。

R.C.: 你最初的预测主要是基于芯片上各部分的成本会不断下降的这样一个想法。所以,这是最终将决定它也是因为这点吗?这是一个经济规律,所以它会有一个经济规律式的消亡?

G.M.:我认为这最终将是一个技术消亡的问题,而不是一个经济问题。当他们不能做得更小的时候,人们仍将在相当长一段时间里继续从产品中压低成本。但我敢肯定,那时就是最终时刻来临的时候了。

R.C.: 我告诉一些人今天将要来采访您,然后我问他们我应该问您什么问题。有些人大笑着说:“你能不能问问他我们怎样才能摆脱这个烂摊子?”因为他们都正挣扎在这些技术难题之中。

G.M.:Whoo. Well, 你总是可以办理退休然后搬到夏威夷来。 (从英特尔退休后,戈登·摩尔通过戈登和贝蒂·摩尔基金会专注于慈善事业。他住在夏威夷的海边。)

G.M.:这是商业的本质。世上没有那么多可以轻轻松松赚钱的生意,有的话(半导体产业,集成电路产业)也肯定不会是其中之一。



以及对超大规模集成电路(VLSI)的祖师爷Carver Mead(同时也是摩尔定律的命名者)的采访:



R.C.: 摩尔定律不是真正的定论,至少不是像我们所定义的物理定律一样,您如何像普通人解释它?

Carver Mead:我总是需要澄清(特别是在早期),这不是一个物理定则。这是一个关于人类行为的规律。为了让事情都像我们半导体技术的发展一样,这需要极大数量的具有创造性且十分努力的聪明的人来实现。他们相信这种努力会造就一个成功的事业否则他们不会付出努力。这种对有可能实现目标的信念最终使得梦想真正得以实现。摩尔定律实际上是关于人们对未来的信念以及他们愿意投入精力促使其发生的意愿。这是一个关于人类(人性,humanity)的了不起的宣言。

R.C.: 当摩尔定律即将终结,会发生什么?

C.M.:我们最不想做的事就是在摩尔定律50周年的当下充斥着一些关于它的即将结束的悲观情绪。事实上,针对晶体管的盲目发展更小的尺寸这条路的确是不会永远持续下去的,但这并不意味着建设更复杂,功能更强大的电子系统的时代即将结束。有很大数目的非常聪明的人们正在一刻不停地挑战并推进极限。比如,有人正试图将光学和电子元件集成在同一芯片上,也就是所谓的硅光子学,而这还只处于起步的阶段。我的经验是,当你觉得在一条学习曲线上感到空气稀薄,在某处总会有一个突破口,但突破口永远不在你正在思考的位置。我们永远无法明了,直到下一个令人激动的BIG thing真正发生。但总会有一个它等在那。



最后是FinFET创始人,UC Berkeley胡正明教授对于摩尔定律的观点:

“我觉得半导体再发展一个世纪都是可以的。常常有些学生和年轻的工程师问我说,我们这个半导体产业将来的前途怎么样,不是摩尔定律要结束了吗?我跟他们说,会继续下去。原因很简单,知道这个原因我想你大概就会同意我的想法。

我们学校里面,又有化学家,又有物理学家,他们都看到了高科技需要半导体,他们也听到了摩尔定律要结束了,所以他们过去十几年都花了很多工夫都在想有什么办法来取代半导体。我有机会跟这些诺贝尔奖级化学教授、物理教授交流,我知道他们在想什么,跟他们谈过很多,我可以说没人能看到有其他任何东西可以取代半导体!但是他们看到很多可以帮半导体前进的东西。

既然不能够取代半导体,剩下来的问题就是半导体给世界的好处,是不是已经走到尽头了,还是说我们这个世界还需要半导体来做更多事情?

我的答案是我们的世界一定还需要更多更多智慧器件,这些智慧器件只有半导体能够在下个世纪给我们的世界,数字革命只是刚刚开始,智慧器件和数字革命,他们的基础都是半导体,既然没有其它的科技能够取代半导体来做数字功能和智慧器件的基础,那么我们这一行应有一百年的远景。 因为这个原因,我如果今天再重新选一行的话,我还是会选这一行,因为我觉得它还有很大的前途。

我觉得数字革命刚刚开始,世界的资源是有限的,要改进人类生活,一定要靠电子智慧。 我们最近在想把一个新功能放在FinFET上面,它只要5个纳米的新材料,我算了一下,如果把所有晶片上都加5纳米新材料的话,每年一共只要 1000公斤材料,就又可以有一场新的革命了!

另一方面,摩尔定律所预言的指数增长到某个时间点必定会放缓。公司为了掌握更高的市场份额、击败竞争对手,必须要拼命把产品性能翻一番甚至翻两番,这些都是可以理解的,也正是他们的努力使得电子产业取得了如此的高速发展。然而,没有哪一种指数增长是可以一直延续下去的。很可能从某一个时间点开始,每两年翻一番的速度就会放缓到每四年到五年翻一番。 而那可能是个更好的结果——与其灿烂无比又一闪而逝,稳定而缓慢的增长显然是更好的。”

对于摩尔定律的未来,半导体业界还是比较乐观的。业界和学界对于摩尔定律的未来已经有了规划,我们将在接下来的几篇文章里讨论。敬请关注!

===

本文由微信平台(微信号:silicon_talks)原创,我们将会发布更多半导体行业深度解读和福利!

您的支持是我们前进的动力,喜欢我们的文章请长按下面二维码,在弹出的菜单中选择“识别图中二维码”关注我们!


    关注 SiliconTalks


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册