【钢铁裁缝】知识点滴:焊接机器人研究及应用现状

 

1焊接机器人的发展历程自从世界上第一台工业机器人UNIMATE于1959年在美国诞生以来,机器人...



1  焊接机器人的发展历程

自从世界上第一台工业机器人UNIMATE于1959年在美国诞生以来,机器人的应用和技术发展经历了三个阶段:

第一代是示教再现型机器人。这类机器人操作简单,不具备外界信息的反馈能力,难以适应工作环境的变化,在现代化工业生产中的应用受到很大限制。

第二代是具有感知能力的机器人。这类机器人对外界环境有一定的感知能力,具备如听觉、视觉、触觉等功能,工作时借助传感器获得的信息,灵活调整工作状态,保证在适应环境的情况下完成工作。

第三代是智能型机器人。这类机器人不但具有感觉能力,而且具有独立判断、行动、记忆、推理和决策的能力,能适应外部对象、环境协调地工作,能完成更加复杂的动作,还具备故障自我诊断及修复能力。

焊接机器人就是在焊接生产领域代替焊工从事焊接任务的工业机器人。早期的焊接机器人缺乏“柔性”,焊接路径和焊接参数须根据实际作业条件预先设置,工作时存在明显的缺点。随着计算机控制技术、人工智能技术以及网络控制技术的发展,焊接机器人也由单一的单机示教再现型向以智能化为核心的多传感、智能化的柔性加工单元(系统)方向发展。



2  焊接机器人国内外应用现状[1]

焊接机器人具有焊接质量稳定、改善工人劳动条件、提高劳动生产率等特点,广泛应用于汽车、工程机械、通用机械、金属结构和兵器工业等行业。据不完全统计,全世界在役的工业机器人中大约有一半用于各种形式的焊接加工领域。截止2005年,全世界在役工业机器人约为91.4万台,其中日本装备的工业机器人总量达到了50万台以上,成为“机器人王国”,其次是美国和德国;在亚洲,日本、韩国和新加坡的制造业中每万名雇员占有的工业机器人数量居世界前三位。近几年,全球机器人的数量在迅速增加,仅2005年就达12.1万台。  我国自上世纪70年代末开始进行工业机器人的研究,经过二十多年的发展,在技术和应用方面均取得了长足的发展,对国民经济尤其是制造业的发展起到了重要的推动作用。据不完全统计,近几年我国工业机器人呈现出快速增长势头,平均年增长率都超过40%,焊接机器人的增长率超过了60%;2004年国产工业机器人数量突破1400台,进口机器人数量超过9000台,其中绝大多数应用于焊接领域;2005年我国新增机器人数量超过了5000台,但仅占亚洲新增数量的6%,远小于韩国所占的15%,更远小于日本所占的 69%。这对于我国的经济发展速度以及经济总量来说显然是不匹配的,这说明我国制造业的自动化程度有待进一步提高,另一方面也反映了我国劳动力成本的低廉,制造业自动化水平以及工业机器人应用程度的提高受到限制。

当前焊接机器人的应用迎来了难得的发展机遇。一方面,随着技术的发展,焊接机器人的价格不断下降,性能不断提升;另一方面,劳动力成本不断上升,我国由制造大国向制造强国迈进,需要提升加工手段,提高产品质量和增强企业竞争力,这一切预示着机器人应用及发展前景空间巨大。



我国焊接机器人的应用状况

我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等主要行业。汽车是焊接机器人的最大用户,也是最早的用户。早在20 世纪70年代末,上海电焊机厂与上海电动工具研究所合作研制了直角坐标机械手,成功应用于上海牌轿车底盘的焊接。一汽公司是我国最早引进焊接机器人的企业,1984 年起先后从KUKA 公司引进了3 台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。1986 年成功地将焊接机器人应用于前围总成的焊接,并于1988 年开发了机器人车身总焊线。20 世纪80 年代末和20 世纪90 年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自动化程度和装备水平让我们认识到了与国外的巨大差距。随后二汽在货车及轻型车项目中都引进了焊接机器人。可以说20 世纪90 年代以来的技术引进和生产设备、工艺装备的引进使我国的汽车制造水平由原来的作坊式生产提高到规模化生产,同时使国外焊接机器人大量进入中国。由于我国基础设施建设的高速发展带动了工程机械行业的繁荣,工程机械行业也成为较早引入焊接机器人的行业之一。近年来随着我国经济的高速发展,能源的大量需求,与能源相关的制造行业也都开始寻求自动化焊接技术,焊接机器人逐渐崭露头角。铁路机车行业由于我国货运、客运、城市地铁等需求量的不断增加以及列车提速的需求,机器人的需求一直处于稳步增长态势。据2001 年统计,全国共有各类焊接机器人1 040台,汽车制造和汽车零部件生产企业中的焊接机器人占全部焊接机器人的76%。在汽车行业中点焊机器人与弧焊机器人的比例为3∶2,其他行业大都是以弧焊机器人为主,主要分布在工程机械(10%)、摩托车(6%)、铁路车辆(4%)、锅炉(1%)等行业。焊接机器人也主要分布在全国几大汽车制造厂。目前在我国应用的机器人主要分日系、欧系和国产三类。日系中主要有安川、OTC、松下、FANUC(日本发那科,当今世界上数控系统科研、设计、制造、销售实力最强大的企业)、不二越、川崎等公司的产品。欧系中主要有德国KUKA、CLOOS,瑞典ABB,意大利COMAU 和奥地利IGM 公司。国产机器人主要是沈阳新松机器人公司产品。

目前在我国虽然已经具有自主知识产权的焊接机器人系列产品,但却不能批量生产,形成规模,究其原因有以下几点:

(1)国内机器人价格没有优势。近十年来,进口机器人的价格大幅度降低,从7~8 万美元/台降低到2~3 万美元/台,使我国自行制造的普通工业机器人在价格上很难与之竞争。特别是我国在研制机器人的初期,没有同步发展相应的零部件产业,如伺服电机、减速机等需要进口,使价格难以降低,所以机器人生产成本高;加之我国焊接装备水平与国外还存在很大差距,也间接影响了国内机器人的发展。对于机器人的最大用户———一汽白车身生产厂来说,几乎所有的装备都是从国外引进,国产机器人找不到

表演的舞台。

(2)国产机器人无论从控制水平还是可靠性等方面与国外公司还存在一定的差距。国外工业机器人是个非常成熟的工业产品,经历了30 多年的发展历程,而且在实际生产中不断地完善和提高;而我国尚处于单件小批量的生产状态。

(3)国内机器人生产厂家处于幼儿期,还需要政府政策和资金的支持。焊接机器人是个机电一体化的高技术产品,单靠企业的自身能力是不够的,需要政府对机器人生产企业和使用国产机器人系统的企业给予一定的政策和资金支持,加速我国国产机器人的发展。



3 焊接机器人技术的研究现状

机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术。从国内外研究现状来看,焊接机器人技术研究主要集中在焊缝跟踪技术、离线编程与路径规划技术、多机器人协调控制技术、专用弧焊电源技术、焊接机器人系统仿真技术、机器人用焊接工艺方法、遥控焊接技术七个方面。

31 焊缝跟踪技术

焊接机器人施焊过程中,由于焊接环境各种因素的影响,如:强弧光辐射、高温、烟尘、飞溅、坡口状况、加工误差、夹具装夹精度、表面状态和工件热变形等,实际焊接条件的变化往往会导致焊炬偏离焊缝,从而造成焊接质量下降甚至失败。焊缝跟踪技术的研究就是根据焊接条件的变化要求弧焊机器人能够实时检测出焊缝偏差,并调整焊接路径和焊接参数,保证焊接质量的可靠性。焊缝跟踪技术的研究以传感器技术与控制理论方法为主,其中传感技术的研究又以电弧传感器和光学传感器为主。电弧传感器是从焊接电弧自身直接提取焊缝位置偏差信号,实时性好,焊枪运动灵活,符合焊接过程低成本自动化的要求,适用于熔化极焊接场合。电弧传感的基本原理是利用焊炬与工件距离的变化而引起的焊接参数变化来探测焊炬高度和左右偏差。电弧传感器一般分为三类:并列双丝电弧传感器、摆动电弧传感器、旋转式扫描电弧传感器,其中旋转电弧传感器较前两者的偏差检测灵敏度高,控制性能较好。光学传感器的种类很多,主要包括红外、光电、激光、视觉、光谱和光纤式,光学传感器的研究又以视觉传感器为主,视觉传感器获得的信息量大,结合计算机视觉和图像处理的最新技术,大大增强弧焊机器人的外部适应能力。激光跟踪传感具有优越的性能,成为最有前途、发展最快的焊接传感器。另一方面,随着近代模糊数学和神经网络的出现以及应用到焊接这个复杂的非线性系统中,使得焊缝跟踪进入了智能焊缝跟踪的新时代。



32 离线编程与路径规划技术

机器人离线编程系统是机器人编程语言的拓广,它利用计算机图形学的成果,建立起机器人及其工作环境的模型,利用一些规划算法,通过对图形的控制和操作,在不使用实际机器人的情况下进行轨迹规划,进而产生机器人程序。自动编程技术的核心是焊接任务、焊接参数、焊接路径和轨迹的规划技术。针对弧焊应用,自动编程技术可以表述为在编程各阶段中辅助编程者完成独立的、具有一定实施目的和结果的编程任务技术,具有智能化程度高、编程质量和效率高等特点。离线编程技术的理想目标是实现全自动编程,即只需输入工件模型,离线编程系统中的专家系统会自动制定相应的工艺过程,并最终生成整个加工过程的机器人程序。目前,还不能实现全自动编程,自动编程技术是当前研究的重点。

33 多机器人协调控制技术

多机器人系统是指为完成某一任务由若干个机器人通过合作与协调组合成一体的系统。它包含两方面的内容,即多机器人合作与多机器人协调。当给定多机器人系统某项任务时,首先面临的问题是如何组织多个机器人去完成任务,如何将总体任务分配给各个成员机器人,即机器人之间怎样进行有效地合作。当以某种机制确定了各自任务与关系后,问题变为如何保持机器人间的运动协调一致,即多机器人协调。对于由紧耦合子任务组成的复杂任务

而言,协调问题尤其突出。智能体技术是解决这一问题的有力工具,多智能体系统是研究在一定的网络环境中,各个分散的、相对独立的智能子系统之间通过合作,共同完成一个或多个控制作业任务的技术。多机器人焊接的协调控制是一个目前的研究热点问题。

34 专用弧焊电源

在焊接机器人系统中,电气性能良好的专用弧焊电源直接影响焊接机器人的使用性能。目前,弧焊机器人一般采用熔化极气体保护焊(MIG 焊、MAG 焊、CO2 焊)或非熔化极气体保护焊(TIG、等离子弧焊),熔化极气体保护焊焊接电源主要使用晶闸管电源和逆变电源。近年来,弧焊逆变器的技术已趋于成熟,机器人专用弧焊逆变电源大多为单片机控制的晶

体管式弧焊逆变器,并配以精细的波形控制和模糊控制技术,工作频率20~50 kHz,最高可达200 kHz,焊接系统动特性优良,适合于机器人自动化和智能化焊接。还有一些特殊功能的电源,如适合铝及其铝合金TIG 焊的方波交流电源、带有专家系统的焊接电源等。目前有一种采用模糊控制方法的焊接电源,可以更好地保证焊缝熔宽和熔深基本一致,不仅焊缝表面美观,还能减少焊接缺陷。弧焊电源不断向数字化方向发展,其特点是:焊接参数稳定,受网路电压波动、温升、元器件老化等因素的影响小,具有较高的重复性,焊接质量稳定、成形良好。另外,利用DSP 快速响应,通过主控制系统指令精确控制逆变电源的输出,使之具有输出多种电流波形和弧压高速稳定调节功能,适应多种焊接方法对电源的要求。



35 仿真技术

机器人在研制、设计和试验过程中,经常需要对其运动学、动力学性能进行分析以及进行轨迹规划设计,而机器人又是多自由度、多连杆空间机构,其运动学和动力学问题十分复杂,计算难度大。若将机械手作为仿真对象,运用计算机图形技术CAD 技术和机器人学理论在计算机中形成几何图形,并动画显示,然后对机器人的机构设计、运动学正反解分析、操作臂控制以及实际工作环境中的障碍避让和碰撞干涉等诸多问题进行模拟仿真,这样就可以很好地解决研发机械手过程中出现的问题。

36 机器人用焊接工艺方法

目前,弧焊机器人普遍采用气体__保护焊方法,主要是熔化极气体保护焊,其次是钨极氩气保护焊,等离子弧焊、切割以及机器人激光焊的数量有限,比例较低。国外先进国家的弧焊机器人已普遍采用高速、高效气体保护焊接工艺,如双丝气体保护焊、T.I.M.E 焊、热丝TIG焊、热丝等离子焊等先进的工艺方法,这些工艺方法不仅有效地保证了优良的焊接接头,还使焊接速度和熔敷效率提高数倍至几十倍。



37 遥控焊接技术

遥控焊接是指人离开现场在安全环境中对焊接设备和焊接过程进行远程监视和控制,从而完成完整的焊接工作。如核电站设备的维修,海洋工程建设以及未来的空间站建设中都要用到焊接,这些环境中的焊接工作不适合人亲临现场,而目前的技术水平还不可能实现完全的自主焊接,因此需要采用遥控焊接技术。目前美国、欧洲、日本等对遥控焊接进行了深入的研究,国内哈尔滨工业大学也正在进行这方面的研究。

4 结论

焊接机器人在高质量、高效率的焊接生产中发挥了重要的作用。工业机器人技术的研究、发展与应用有力地推动了世界工业技术的进步。近年来,焊接机器人技术的研究与应用在焊缝跟踪、信息传感、离线编程与路径规划、智能控制、电源技术、仿真技术、焊接工艺方法、遥控焊接技术等方面取得了许多突出的成果。随着计算机技术、网络技术、智能控制技术、人工智能理论和工业生产系统的不断发展,焊接机器人技术领域还有很多亟待解决的问题,特别是焊接机器人的视觉控制技术、模糊控制技术、智能化控制技术、嵌入式控制技术、虚拟现实技术、网络控制技术等方面将是未来研究的主要方向。当前焊接机器人的应用迎来了难得的发展机遇。一方面,随着技术的发展,焊接机器人的价格不断下降,性能不断提升;另一方面,劳动力成本不断上升,我国由制造大国向制造强国迈进,需要提升加工手段,提高产品质量和增加企业竞争力,这一切预示着机器人应用及发展前景空间巨大。

为用户提供智能焊接切割整体解决方案
www.wfxuda.com
+技术支持:13506495139


    关注 钢铁裁缝


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册