柔性显示专题  日本开发出超柔液晶显示器件,挑战AMOLED?

 

日本东北大学2016年5月13日宣布,成功开发出了超柔性构造的液晶显示器件。该器件即便在弯曲状态下也不会发生...






小C君送福利:如需OLED相关优质投资项目,请发送“OLED投资+公司+姓名+职位+手机号”

日本东北大学2016年5月13日宣布,成功开发出了超柔性构造的液晶显示器件。该器件即便在弯曲状态下也不会发生显示错乱的现象,并已证实,最大以3mm的曲率半径弯曲并恢复原状后,衬垫(Spacer)不会损坏,可以保持均匀的显示。有望应用于便携信息终端、可穿戴系统、车载显示器及数字标牌等。

采用塑料基板的柔性显示器可大幅提高便携性、设置及设计的自由度,因此作为实现新观看方式的新一代显示器而备受期待。柔性液晶显示器的优点是,可以使用已有的高画质面板制作技术和生产设备、不会随着时间的推移而发生劣化、无需担心寿命、量产效率出色、成本低等。但是,现有塑料基板的厚度为100μm左右,弯曲后夹着液晶层的两块基板之间的间隔会变得不均,存在影像容易显示错乱的课题。


超薄聚酰亚胺透明基板
此次通过用10μm厚的超薄聚酰亚胺透明基板夹住液晶层,并使用高分子墙衬垫来进行基板的接合,成功制作出了柔性极高的液晶显示器件。超薄基板是通过涂敷透明聚酰亚胺用溶液再剥离制作而成的。具有类似食品包装膜的柔软性以及可以形成电极及彩色滤光片等像素构造的耐热性。而且,折射率各向异性极小,可以实现对比度高、视角大的显示。


将此次试制的液晶器件卷绕在玻璃棒上进行耐久测试时的情形
接合两块基板的高分子墙衬垫的制作方法是,隔着超薄基板对混有高分子材料的液晶层进行紫外线图形曝光。基板越薄,基板间隔就越容易发生变化,此次通过形成间隔很小的衬垫,实现了稳定的基板间隔。今后不仅要嵌入像素构造,而且要实现包括偏光板等外围部材在内的各种元器件的柔性化。

此次的研究成果将在5月22日于美国旧金山举行的国际会议“SID(Society for Information Display)InternationalSymposium”上发布。

将液晶屏弯曲也能维持基板间隔

在各种平板显示屏(FPD)中,有机EL显示屏因为能够实现高对比度、高色彩表现范围,而且容易实现超薄化,从而作为柔性显示屏的主流技术被关注。

具有代表性的电子纸——电泳显示屏(EPD)早已作为柔性显示屏投入实用。而且,这种显示屏是具有记忆性、无需背照灯的反射型,还不需要偏光板,因此能够得到明亮、无彩色的显示。但在彩色显示和视频显示方面存在课题。这一点之前也做过介绍。

而液晶显示屏能够实现大屏幕、高精细化,具有可以实现较大的色彩表现范围等特点,作为高品质显示屏已经得到广泛应用。而且,液晶屏的制造技术非常成熟,过不了多久,中国的产量就会成为第一。但液晶终归是液体,必须有序排列,所以,随着极薄化和柔性化的发展,液晶屏在显示品质的稳定化方面出现了课题。

图1是柔性液晶显示屏的基本结构。要想实现实用的柔性液晶显示屏,重点是要利用液晶盒内形成的微细聚合物间隔壁(polymer spacer wall)的网络结构,保持一定的液晶盒间隙,并且保持稳定的取向。日本东北大学的藤挂石锅研究室,通过在液晶中溶解分子取向性的高分子材料(树脂),进行紫外线图案曝光,开发出不破坏液晶取向、可以使2枚基板以固定间隔接合的高分子间隔壁,以“Invited AdvancedPolymer and LC Technologies for High Quality Flexible Displays”为题发表了演讲(论文编号:FLX2/LCT5-1)。图1的“Bondingpolymer wall spacer”,就是他们开发出的高分子间隔壁。


图1:柔性液晶显示屏的基本结构  (日本东北大学提供的资料)
而且,柔性液晶显示屏需要柔性的背照灯。图2是在能够实现薄型柔性化的背照灯用导光板中采用液晶高分子复合膜,有助于实现高对比度化、省电力化的局部调光背照灯系统。复合膜内的液晶和高分子都具有分子取向,通过开关电压,可以表现为光散射或透明状态。


图2:柔性薄型局部调光背照灯系统  (东北大学提供的资料)
另外,局部调光背照灯会根据影像自动控制局部的背照灯亮度,具备在降低功耗的同时,提高影像对比度的功能。还可以抑制影像的黑色部分“泛白”的现象。在图2中,影像显示“月亮”的区域的电压为“ON”,为“光散射状态”,其他区域的电压为“OFF”,为“透明状态”。

东北大学在演讲中还介绍了塑料基板和液晶的光学补偿,公布了VA模式及IPS模式的柔性液晶显示屏的试制情况和显示品质。纵观2015年IDW的所有论文,东北大学藤挂石锅研究室发表的这篇柔性液晶显示屏相关论文鹤立鸡群。下面,笔者将介绍一下自己特别感兴趣的内容。

柔性液晶显示屏的支撑技术

不锈钢箔有望成为基板材料日本东北大学开发出了使用具有耐热性的超薄不锈钢箔(新日铁住金制造)和聚碳酸酯薄膜(帝人制造)作为基板材料的VA模式反射型柔性液晶显示屏,以“Flexible Reflective LCDs Using Stainless Steel Substrate andOptical Compensation Technology”为题发表了演讲(论文编号:FLXp1-4L)。

试制的反射型柔性液晶显示屏的截面结构如图3所示。两片基板的表面涂敷聚酰亚胺膜(日产化学工业的“SE-4811”)后,在120℃的温度下加热,作为液晶的取向膜使用。液晶盒的厚度为2μm,真空填充了液晶材料(德国默克公司的“MLC-2038”)。为了实现高对比度及广视角,还使用了双轴拉伸膜、圆偏光板以及光扩散板。图4是试制的柔性反射型液晶显示屏的显示示例(照片是不锈钢基板弯曲时拍摄的)。


图3:使用不锈钢基板的柔性反射型VA模式液晶显示屏的截面结构 (东北大学提供的资料)


图4:使用不锈钢基板的柔性反射型VA模式液晶显示屏的显示示例 (东北大学提供的资料)


试制的液晶显示屏实现了20:1以上的良好对比度。证明了不锈钢箔是有望实现高品质、低功耗的反射型柔性液晶显示屏的基板技术。

利用In-cell偏光板解决柔性液晶的课题

对于使用染料类偏光膜的In-cell型偏光板,及其在TN液晶显示屏中应用的结果,日本东北大学发表了题为“Fabrication of Thin Flexible Liquid Crystal Display Using Dye-TypeIn-Cell Polarizer”的演讲(论文编号:FLXp1-5L)。塑料基板导致显示品质差、视角特性狭窄是柔性液晶显示屏面临的一大课题。而且,如图5所示,偏光板及相位差板的厚度造成了柔性差的问题。作为解决这些课题的方法,东北大学想出的办法是采用In-cell偏光板。


图5:通常的柔性液晶显示屏与使用In-cell偏光板的显示屏的结构比较
左边是通常的柔性液晶显示屏,右边是使用In-cell偏光板的柔性液晶显示屏。(东北大学提供的资料)


面板的制作步骤如下。首先在染料类偏光板上低温生成ITO膜(膜电阻为100Ω/□),使用PVA类粘合剂,与作为底板的TAC(triacetylcellulose)薄膜和偏光板接合。然后,借助离型膜(日本新田公司制造),使TAC薄膜与玻璃基板接合。再使用250nm的紫外线,照射偏光板表面6~12分钟,使表面变性后,利用旋涂方式涂敷光取向膜。使用5μm的间隔壁,使液晶盒厚度保持固定,使用紫外线硬化树脂制作密封图案,接着再注入液晶。

试制面板的电压透射特性与外置偏光板基本相等。如图5的右侧所示,显示屏的厚度缩小到0.2mm,实现了薄型化。而且对比度达到了260:1。其特性与使用通常的玻璃基板的TN液晶显示屏相当(图6)。


图6:使用In-cell偏光板的TN液晶显示屏
(a)电压打开,(b)电压关闭。(东北大学提供的资料)


可以延展的无基板液晶显示屏

未来,市场不仅需要柔性,还需要可以延展的“伸缩显示屏”。要想实现这种显示屏,必须开发出无需基板、可以实现高对比度显示的组件结构。为此,研发人员抱着在具有独立性的液晶高分子复合膜中,自由控制伴随分子取向的液晶的分散形态这一目的,对基于紫外线图案曝光的液晶高分子相分离展开了研究。

日本东北大学在题为“Morphological Control of the Liquid Crystal Droplets inMolecular-Aligned Polymer for Substrate-Free LCDs”的演讲(论文编号:LCTp5-9L)中,介绍了通过控制液晶与高分子的分子取向,利用双折射实现高对比度显示的“无基板液晶显示屏”。

具体来说,是在向列液晶(JNC制造的“TD-1013LA”)中混合50wt%的二官能液晶性单体C型(DIC制),注入了利用摩擦法进行了扭曲取向处理的液晶盒(液晶盒厚度为10μm)。使用正交网格状的光掩模(间隔为120μm或60μm),对液晶盒进行了紫外线图案曝光。紫外线强度为3~100mW/cm2,温度控制在25~50℃。结果表明,通过改变相分离的条件,可以控制取向液晶的分散形状,使高分子包含更多的控制了取向的液晶。

图7是向试制器件(TN液晶液滴)加载电压时的偏光显微镜照片。图8是该器件的电压透射特性与通常的TN液晶显示屏的特性的比较。试制的TN液晶液滴的特性与通常的TN液晶显示屏相比,阈值电压略高,关闭状态的透射率也比较高,还有改善的余地。但通过这次的开发,获得了关于实现利用高分子取向维持液晶取向的无基板液晶显示屏的有用的知识,今后的发展值得期待。聆听东北大学的演讲,笔者不禁要想:“通过使用必须靠薄膜等多层涂层才能发挥作用的柔性有机EL技术,真能实现无基板吗?”


图7:TN模式液晶液滴的动作 (东北大学提供的资料)

验证附带平坦薄膜的不锈钢箔

为了研究金属箔作为柔性基板的可能性,使用的是有平坦层的不锈钢箔(新日铁住金制造的“#190SB”)。新日铁住金以“Planarized Stainless Steel Foilfor Flexible Substrate”为题,就不锈钢箔基板发表了演讲(论文编号:FMC3-1)。基板的板厚为8~100μm,表面状态为超级光亮(SB),热膨胀系数CTE为11×10-6/℃。分别使用旋涂和卷对卷(R2R)涂敷两种方式,在表面上形成了平坦薄膜。通过涂敷平坦薄膜,表面粗糙度Ra从6.2nm降至0.6nm,Rmax从78.2nm降低到了8.9nm。

在试制有机EL屏时,该公司对平坦层(3μm)释放的气体进行了检测,得到的数据小到可以忽略不计。在两种基板上制作有机EL照明器件样品的结果表明,二者均可正常工作。另外,使用R2R涂敷方式的不锈钢箔的厚度为50μm,宽度为300mm。以上结果表明,不锈钢箔可以作为柔性基板使用。

有机TFT驱动塑料液晶显示屏

有机薄膜晶体管(OTFT)的移动度为1~10cm2/Vs,超过了非晶Si(a-Si)TFT的0.5cm2/Vs。在本次的IDW上,英国FlexEnable公司以“Invited Plastic Liquid CrystalDisplays Enabled by Organic Transistor Technology”为题,介绍了使用TAC薄膜,为主动驱动用途试制使用OTFT的IPS液晶显示屏的结果。厚度为40μm的TAC为低双折射性,Rth<1nm、Ro<1nm,具有与玻璃基板相同的光学特性,适合作为液晶显示屏的基板。液晶的取向控制采用光取向,液晶盒厚度的控制使用光刻形成的间隔柱。

通过采用新开发的具备自组织高分子壁的液晶材料,提高了坚固性。试制的OTFT驱动IPS液晶显示屏的画面尺寸为4.7英寸,画面宽高比为16:9,厚度为300μm,去掉背照灯后的重量为10g。该器件可以弯曲到半径为50mm的程度。能在低于100℃的低温下制作的OTFT,开拓出了有源矩阵用背板的新应用领域。

OTFT的弯曲半径为0.5mm,1万次测试后的阈值电压变化很小,非常稳定。通态电流的变化也同样稳定。

除此之外,正如之前报道的那样,英国Plastic Logic公司已经开始量产OTFT驱动的电子纸。另外,使用OTFT的气体传感器、影像传感器以及X射线检测器的生产也已实现。

结语

这一次,连同基础技术在内,介绍了很多的内容,笔者自认为读起来应该非常过瘾,不知大家感觉怎样?

这里介绍的局部调光背照灯、In-cell偏光板(很遗憾不是涂布型)、无基板液晶显示屏等,都是出色的研究成果。为实现柔性液晶显示屏而开展的系统性研发,是日本今后在这一领域打赢国际竞争的重要条件。但正如以前报道过的,Flex Enable通过与默克公司合作,已经开发出了OTFT驱动IPS液晶显示屏。日本也要加快速度了。

但现在有人说“大学不用教显示器相关课程”,只能说这样的看法缺乏预见性。从很早以前,“照明工学”就从电气类学科、“传热工学”就从机械类学科的课程中消失了。设置课程的人完全不知道在开发智能手机时,这些技术有多么重要。笔者希望告诉学生和年轻的技术人员,如果把鼠目寸光的人的话当真,日本将没有未来。(特约撰稿人:鹈饲育弘,Ukai Display Device Institute代表)

延伸阅读:有机EL,柔性显示器的主流技术

1.前言本文将以“有机EL,柔性显示器的中流砥柱”为题,介绍柔性显示器的开发、实用化现状与展望。有机EL也叫OLED(OrganicLight Emitting Diode),尤其是驱动元件采用TFT的有源矩阵驱动式有机EL(AMOLED:ActiveMatrix Organic Light Emitting Diode),能够实现高清晰度的全彩显示。

在进入正题之前,笔者将首先比较液晶与有机EL两种显示器的器件构造。然后明确大型有机EL电视的量产课题;接着介绍2015年11月初发表的单层构造的有机EL;最后讲解正题“柔性有机EL的现状”,希望通过笔者的讲解,让大家认识到现状与最终目标存在的差距。

2.液晶 vs. 有机EL2.1 显示器的器件构造与直接材料成本比率笔者目睹了显示器市场从长期占据主流的显像管(CRT)到液晶的变迁。不只是CRT和液晶,在形形色色的显示中,部件和材料的作用乍看普通,其实都非常重要,是在显示技术发展中决定产品优劣的最大要素之一。

CRT与液晶的共同点是部件数量多、通用性高。CRT厂商和液晶面板厂商很容易就能更换部件供货厂商,在市场成熟之后,依然有新企业不断涌入。部件厂商之间,改善性能、降低成本的竞争增加。通过竞争,改善性能、降低成本两个原本相悖的趋势实现了齐头并进。在激烈竞争的洗礼下,技术的进步令人叹为观止。笔者认为,部件通用性高、涉足门槛低的技术,是成为显示器主力军的必备条件。

现在,以有机EL为中心,新一代显示器的开发和实用化进行得如火如荼。新一代显示器一般倾向于把部件数量少、构造简单作为理想状态。构造简单当然最好不过,但不可否认的是,部件数量少可能会导致参与开发的企业少,竞争有限。

液晶的一大优势,在于部件厂商的技术提案非常多。显示性能好的显示器,并不一定就能成为主流。还必须看起能够占领市场的投资和部件产业的发展。现在已经建立起稳固地位的液晶,还有激光源、量子点等部件新选择,所以今后,其地位估计今后也不会动摇。

图1是液晶和有机EL(这里分别为TFT-LCD和AMOLED)的器件构造。图中()内的数字代表成本比率。AMOLED是自发光器件,无需背光单元(BLU)。而TFT-LCD(一般使用的透射型),背光单元是必需品,占总成本的比率高达50%。从削减成本的角度出发,背光单元等部件也是重要项目。因为在TFT-LCD的成本构成中,直接材料成本(部件成本)占到了60~70%,如果不从这里着手改良,根本不可能削减成本。通过TFT-LCD基板的大型化削减成本的方式已经达到了极限。
(a)TFT-LCD的器件构造


(b)AMOLED的器件构造
图1:TFT-LCD与AMOLED的器件构造与成本构成
TFT-LCD如图1所示,包括作为透射型显示器光源的BLU、随着加载电场开关灯光的液晶和偏光板,以及实现彩色化的彩色滤光片(CF),部件的功能各自独立。而且,TFT基板与CF基板基本上是通过不同的工序制作。因此可以逐道工序进行检查及修复。这特别有助于提高使用大型基板的大屏幕TFT-LCD(1枚基板可以制作的数量少)的成品率。

而AMOLED则是通过在TFT阵列的基板上叠加纳米级有机膜的方式制作。因此,从器件构造来说,虽然每层有机膜的功能各自独立,但无法在加工过程中进行检查和修复。可以称之为“功能集成器件”。

2.2量产有机EL电视面临的课题2013年的“SID”举办的“LCD or OLED?”讲座(Session 3)上,笔者以“TFT-LCDas leading role in FPD”为题发表了特邀演讲。在演讲中,列举了有机EL电视存在的5个量产课题,指出“重要的是解决这些课题,向消费者展示与液晶电视的差别,并且具有价格竞争力”。

(a)发光材料:低分子(真空蒸镀)或高分子(印刷)、荧光或磷光
(b)需要解决耗电量、寿命、残影等问题
(c)支持第10代面板的TFT阵列制造装置
(d)替代掩模蒸镀的分涂技术和装置
(e)支持大型面板的封装技术和装置

那场演讲已经过去了2年多,现在量产大屏幕电视用有机EL面板的企业,只有韩国LG显示器一家。听说该公司虽然没有取得明显的技术突破,但通过改变器件构造,提高了成品率。不过,产量等于[(成品率×开工率)/工期时间],由此推测,IGZO的成膜和发光层蒸镀工序的开工率绝对不高。

3.有机EL的器件构造与制造工艺
(a)过去由多层构造组成的有机EL(OLED)


(b)由单层组成的有机EL(OLED)的模式图
图2:过去的多层构造与新开发的单层构造的有机EL(OLED)
现在的有机EL通过使用磷光发光材料,量子效率达到了100%的理论极值。器件构造如图2(a)所示,采用多层构造。各层使用真空蒸镀法,层叠纳米级有机材料。构成了多层分担有机EL的各项功能的构造。
图3:利用单层构造有机EL(OLED)实现的白色显示
东北大学教授矶部宽之等人得到了一个颠覆常识的发现:“通过设计1种基础材料,可以制作出单层、发光效率接近理论极值的有机EL”(图2(b))。使用的有机材料,是仅由碳和氢两种元素组成的有机物(碳氢化合物)。从分子设计的本质出发,成功简化了有机EL的设计方针。从“最大限度激发元素性能”的元素战略的角度来看,也是一项重要的发现。该研究组已经证实,这种新型的碳氢化合物,能够利用磷光发光材料,实现红、绿、蓝三原色。如图3所示,成功制作出了白色发光器件。

这一发现的重点,是使用苯周围有甲基(CH3)的甲苯,可以制作出功能更强,单层且具有高发光效率的有机EL基础材料。通过对树木中分离出的天然物(甲苯)进行分子设计、化学转化,形成5个相连的分子(5Me-[5]CMP),即可制作出高功能电子材料。这种电子材料只使用碳和氢元素。在不久的未来,有望实现“轻轻一喷就能制造”。

4.柔性有机EL的现状与展望图4是已经投入量产或正在开发的有机EL显示器。现在的大屏幕有机EL电视使用的显示器,是截面固定的曲线(Fixed Curve)形状,曲线的半径R为4500mm。还算不上是柔性显示器。已经投产的智能手机用“柔性有机EL”,其实是固定曲线或是固定边缘曲线(Fixed Edge Curve),也谈不上柔性(半径R方面,固定曲线为700mm,固定边缘曲线为10mm)。可穿戴用显示屏也是固定曲线(R=5~10mm),同样不是柔性。现在正在开发的折叠(Large Fold)和多层折叠(Acute Foldable)应该可以称为柔性显示器。半径R方面,折叠为3mm,多层折叠为1mm以下。


图4:已经投入实用和正在开发的柔性有机EL(OLED)
现在,大屏幕电视用有机EL面板,只有LG显示器投入了量产。其配备的TFT使用IGZO,是在玻璃基板上制作。而移动产品使用的面板,则有韩国三星显示器和LG显示器两家进行量产。其中也有使用树脂基板的类型。这些面板都是在玻璃基板上涂布聚酰亚胺膜,在上面制作低温多晶硅(LTPS)TFT,然后层叠有机EL,从玻璃基板上剥离聚酰亚胺膜。移动产品用与电视用不同,功耗必须要低,因此只能使用可以形成COMS电路的LTPS TFT。这些都是基于无机半导体的TFT,可以弯曲的半径存在限制。

5.JOLED的战略下面来介绍汇集日本的最尖端有机EL技术(索尼和松下),于2015年1月5日诞生的“JOLED”公司的技术。JOLED将利用下面的技术,确立OLED的优势地位。

5.1有机EL印刷技术(Printed OLED)这项技术采用无需RGB真空镀膜的印刷方式。这种方式是通过在空气中印刷材料形成发光层(EL层),“无需真空环境”、“无需掩模”,制造工艺需要的投资少,维护简单。而且容易支持面板的大型化。因为只需要在需要的位置涂布需要的分量,所以材料的损耗少。

但是,这样制作出来的有机EL,是否具有与蒸镀法相同的特性和寿命?印刷方式能够实现多高的清晰度?在思考有机EL的应用时,这些是非常重要的课题。通过在中型TFT液晶中应用,4K、8K的高清晰度面板正在开发或已经投入了实用。

5.2氧化物半导体技术这项技术采用索尼开发的自对准型顶栅构造,使用5枚掩模制作TFT。利用自主开发的金属反应,降低了TFT电极部分的电阻。这项技术确保了TFT的高稳定性。还将通过组合自主开发的补偿电路技术,在中型以上尺寸充分发挥有机EL的性能,争取实现高清晰度、低成本的显示器。

不过,氧化物半导体的真空镀膜(溅射)与非晶Si(a-Si)镀膜使用的等离子CVD相比,装置的开工率和成品率存在课题。而且,以IGZO为代表的氧化物半导体为多元材料(例如四元),不容易以均匀的成分和厚度,在大面积基板上制作。从绿色工艺的观点出发,笔者衷心希望开发出涂布型的氧化物半导体TFT技术,并将其投入实用。

5.3柔性面板JOLED正在利用在玻璃基板上成膜并转印至薄膜的技术,开发柔性面板。但是,柔性显示器的实现,关键在于利用卷对卷(R2R)方式进行生产,而非单张方式。重要的是以有别于现有厂商的技术,提供用户需要的柔性显示器。

6.结语有机EL具有液晶难以实现的显示特性,所以它一直被看作是柔性显示器的主流。本栏目比较了二者的器件构造及成本构成。在明确大型有机EL电视存在的量产课题的同时,介绍了当前的柔性有机EL。这些有机EL现在采用的生产方式,与绿色工艺还相去甚远,换言之,日本厂商还有机会扳回劣势。笔者这次介绍的都是“日本发明”的技术,希望这些新技术能够引领世界的显示器产业和学会不断向前发展。(特约撰稿人:鹈饲育弘,Ukai Display Device Institute代表)
高精尖人才集结号吹响!
不用看JD!只要你是面板界精英,小C君倾力免费为你谋得高薪好职位
简历请投递至hr@cinno.co
点击查看往期精彩内容:

《报告 | AMOLED势不可挡,大陆产业链精彩纷呈

《日本大啃OLED商机,OLED蒸镀光罩DNP产能扩3倍;夏普OLED量产可望提前》

《面板与光学技术的挑战!国内面板厂如何出招抢食VR商机?》

《LCD最后一个创新任务:无需偏光膜的纳米压印技术或优先导入液晶面板生产》

《传三星加码投资量子点,8代线年底更换设备;OLED和QLED谁能胜出?》

《OPPO:2016年1月AMOLED智能机销量破2百万部,连续7个月国内销量王

《硅基(Si)OLED:你不可不知的下一代显示技术中的黑马!》

《Senseg静电触控反馈技术到底是什么?全新触控时代超乎你想象!》《全球最权威 VR 报告汉化版来了!让你彻底搞懂它为何能代表未来

《2015年中国智能手机市场分析报告(简版PPT)》

《2015年全球手机面板出货量排行榜》

《2015年国内手机品牌LTPS面板采用率达37%,国产化自给率突破20%》


    关注 CINNO


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册