【瑞景观察】智能电动汽车产业链调研(三)

 

瑞景观点:未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的...



瑞景观点:未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

接【瑞景观察】智能电动汽车产业链调研(二)3、ADAS零组件:感知、决策、执行

汽车智能涉及多种元器件,包括感应识别、执行机构、芯片算法、地图导航、车联网等模块。ADAS的主要功能模块主要包括:感知、决策、执行等。其中,执行模块的难度较大,电控制动执行技术主要被博世、大陆等公司掌握。芯片、激光雷达、毫米波雷达等感知元器件通常由外资公司把控。中资公司在感知决策算法领域有一定积累。V2V和V2X未来可能成为汽车智能感知的组成部分。





感应识别模块:多传感器融合发展

感应识别硬件:以雷达和摄像头为主,多传感器融合发展。目前主流的车载传感器包括超声波雷达、激光雷达、毫米波雷达、摄像头、红外探头等。基于测量能力和环境适应性,预计雷达和摄像头会成为传感器主流,呈现多传感器融合趋势。





 

毫米波雷达:性价比优秀的测距传感器

毫米波雷达是性价比优秀的传感器,优势在于探距精度高,缺陷在于覆盖角度较小。目前主要应用分硬件和软件两个领域,未来毫米波雷达硬件主要集中在24G和77G两个频段,软件算法等可能逐渐芯片化。



全球汽车毫米波雷达主要供应商为传统汽车电子优势企业。如博世、大陆、海拉等。



毫米波雷达存在国产化预期。国内厂商试图突破核心技术,但目前相对成熟的产品仅有湖南纳雷和厦门意行的24GHz中短距雷达,77GHz雷达刚刚起步。

激光雷达:成本下降是趋势,有望进一步普及

激光雷达可以扫描生成3D高精度地图,是智能驾驶领域中常用的感知元件。激光雷达发射激光束来探测目标的位置、速度等特征量。车载激光雷达采用多个激光发射器和接收器,建立三维点云图,从而达到实时环境感知的目的。



目前,有旋转部件的激光雷达技术相对成熟,国外主流生产厂家为Velodyne和Ibeo。Velodyne采用激光发射、接收一起旋转的方式,产品涵盖16/32/64线等,未来可能拓展128线;Ibeo采用固定激光光源,通过内部玻璃片旋转的方式改变激光光束方向,实现多角度检测,产品涵盖4/8线等,欧百拓为Ibeo的国内合作方。



激光雷达固态化是未来趋势,具有小型化、低成本的优势。创业公司Quanergy与德尔福合作开发出了固态激光雷达,采取相控阵技术,内部不存在旋转部件。传统优势企业Velodyne和Ibeo也推出了混合固态激光雷达,外观上看不到旋转部件,但内部仍靠机械旋转实现激光扫描。我们预计至2020年,固态激光雷达成本或可降至250美元;至2025年,成本可继续降低至100美元;届时激光雷达成本将与普通毫米波雷达相当。



国内有数家公司参与激光雷达的研发与生产,应用领域包括大气污染检测、三维测绘、汽车等。但目前罕有能够应用于智能驾驶场景的高精度激光雷达。

摄像头:龙头地位稳固,有望快速发展

摄像头是常用的ADAS感知识别元件。海外龙头如Mobileye等公司采用基于摄像头的图像识别感知。目前摄像头的应用主要有:1)单目摄像头;2)后视摄像头;3)立体摄像头;4)环视摄像头。



镜头模组:国内镜头行业龙头地位稳固,有望快速发展。光学镜头目前广泛用于手机、车载、相机等领域,由于手机等数码产品增长放缓,镜头产业转移到车载趋势明显。国内行业龙头优势地位明显,如舜宇光学车载后视镜头出货量目前居全球第一位,全球市场占有率达30%左右,已进入各大车企(BMW、Benz、Audi等)前装市场。我们预计未来车载镜头业务提升有望推动国内行业龙头业绩快速增长。



  

红外夜视:成长空间大,关注国内龙头

红外夜视主要适用于夜间无路灯黑暗路段。中国道路基础设施较好,车载红外夜视的使用场景相对有限。当前红外夜视成本依然偏高,主要用于中高端车型。



  

执行机构:电控化是趋势,电控制动难度最高

执行机构电控化是智能驾驶的必要条件。我们认为,未来汽车的三大主要执行系统(驱动、制动、转向)都将采用电控化方案,因为:1)电控系统更方便整合智能驾驶技术;2)新能源汽车为电控系统提供了天然的优势平台;3)电控系统可以在同一辆车上实现多种不同的驾驶风格;4)电控化方案可以大幅降低系统复杂度助力汽车轻量化;5)电控化系统直接控制电机,效率更高,响应更快,驾驶更加安全。



 

驱动系统:由集中式到分布式

驱动系统将由集中式向分布式发展。现有的驱动系统,无论传统燃油汽车,还是电动汽车,都只有一个动力源(发动机/驱动电机),称为集中式驱动。分布式系统即车辆有多个动力源,由多个电机分别驱动不同的车轮。



分布式驱动系统可分为两种:轮边驱动和轮毂驱动。轮边电机,是指每个车轮单独配备一个驱动电机,电机与车轮是分离的,根据电机特性,电机与车轮中间可能配备有齿轮减速机构。轮毂电机,是指电机的外转子即车轮轮毂,可直接在电机外转子上安装轮胎。相比而言,轮边电机更容易实现,而轮毂电机集成度更高。



从发展路径上看,轮边驱动率先实现商业化,轮毂驱动是终极发展目标。制约轮毂电机商业化的问题主要包括:1)成本高;2)高温环境严苛,电机易退磁;3)工作环境恶劣,易进水、多泥沙、多振动,严重影响轮毂电机的寿命;4)一致性要求高;5)舒适性差。但是,相比于轮边电机,轮毂电机集成度更高、无需齿轮传动装置、对安装空间要求小、更适合制动能量回收,是分布式驱动的终极发展目标。

  

转向系统:线控转向是未来方向

线控转向依靠电信号控制,是未来发展方向。线控转向即取消方向盘与转向机之间的机械连接,代替以传输线和电控单元ECU。相比于传统机械转向系统,线控转向有明显优势:1)节省布置空间,减轻系统重量,有助于汽车轻量化;2)碰撞工况下更加安全,由于取消了转向管柱,正面碰撞情况下的驾驶员安全性提升;3)适应智能汽车,可变速比,转向响应更加智能安全;方便整合车道保持LKA、主动转向、自动泊车等ADAS功能。



可靠性是制约线控转向商业化的主要瓶颈。2013年上市的英菲尼迪Q50是目前唯一的线控转向量产车(保留机械备份),但已两次因转向系统问题被召回。目前提高可靠性的技术方案主要有:1)保留机械备份,即保留原有的转向管柱等连接机构;2)余度管理技术,即采用多套电控系统,互相监控、互为备份,此技术目前尚在实验室研究阶段。

  

制动系统:EHB/EMB两大路径

电子辅助制动已广泛应用于传统汽车。消费者熟知的辅助制动系统包括:ABS(Antilock Brake System,制动防抱死系统)、ESP(Electronic Stability Program车身电子稳定系统)等。

传统汽车液压制动系统依赖真空助力器,难以满足电动汽车需求;电控制动成为未来趋势。传统汽车的液压制动系统包括:制动踏板,真空助力器,液压系统,制动盘或制动鼓。其中真空助力器将驾驶员较小的踩踏力放大为较大的制动力,因而是核心部件;其真空环境一般取自发动机的进气歧管,因而难以满足电动汽车的需求。取代方案包括:1)电子真空泵;2)电控制动。我们认为,电子真空泵只是暂时的权宜之计,电控制动将是未来发展趋势。



电控制动技术包括EHB和EMB两种方案。电控制动是指依靠电信号传递制动信息,替代液压制动系统。电控制动系统包括电控液压制动EHB和电控机械制动EMB。

电控液压制动EHB技术较为成熟,已应用于量产汽车。EHB系统在制动踏板与液压系统之间仍保留机械连接,利用电机助力推动主缸。EHB的研发始于上世纪九十年代,目前已有比较成熟的产品,如博世ibooster;并已成功应用于量产汽车,如奔驰(SL级,E级)



电控机械制动EMB是重点研究方向,安全性制约商业化进程。EMB系统无需真空助力器和液压系统,直接依靠电机驱动制动执行机构。具有EMB技术储备的零部件厂商包括布雷博、瀚德等;整车方面尚停留在概念车阶段。EMB系统还存在一系列问题,因而近期难以商业化:1)电机难以满足要求;2)制动高温环境恶劣,电机面临退磁风险;3)汽车的操纵性和舒适性较差;4)安全隐患,电子故障可能导致制动失灵。

  

芯片:智能决策核心硬件

芯片按照所处功能层划分大致可分为处于感应层的传感器芯片,处于决策层的主控芯片和处于执行层的功率半导体芯片等。其中,传感器芯片和主控芯片是构成智能驾驶的两大基本技术。主控芯片:着眼传统芯片,展望智能驾驶专用芯片

传统汽车芯片:市场竞争充分,份额较为分散。传统汽车芯片即MCU(Micro Controller Unit),又称单片机。传统汽车芯片参与者众多,包括瑞萨、英飞凌、意法半导体、飞思卡尔、恩智浦等。

智能化程度的提高需要人工智能深度学习的介入。智能驾驶面临的环境是高度复杂的,很难用有限的规则来定义清楚,传统算法的表现往往无法满足要求,而深度学习的优势则非常明显。

深度学习多层模型带来数据量爆炸式增长,传统CPU已经不能满足计算要求。神经网络层数的增加直接导致了运算量的急速增长,传统的CPU架构已经不能满足深度学习计算要求。显示芯片与传感器芯片:助力ADAS系统主动安全技术发展

传感器芯片一体化有望成为车辆周边识别技术的发展趋势。伴随人们对驾驶安全的需求不断增大,多传感器融合的技术路线将被看好,未来有望实现摄像头、激光雷达、毫米波雷达等多传感器在单一芯片上的融合集成。

Mobileye发布新一代视觉SoC芯片积极进军传感器融合市场。今年5月Mobileye联合意法半导体发布针对自动驾驶的新一代视觉系统芯片——EyeQ5。EyeQ5将装备8枚多线程CPU内核,同时还会搭载18枚Mobileye的下一代视觉处理器,最多支持20个外部传感器(摄像头、雷达或激光雷达),主要定位于L3或L4自动驾驶阶段的应用。

GPU(图形处理器)众核同步并行运算,适于智能汽车深度学习。GPU包括数以千计的更小、更高效的核心(最多的英伟达K80有5700个核),因此常被称为“众核”;GPU只有非常简单的控制逻辑并省去了Cache,适合把同样的指令流并行发送到众核上,进行海量数据的快速处理。事实证明,在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。

GPU王者NVIDIA:搭建自动驾驶汽车专用计算机。目前国际GPU市场被NVIDIA和AMD两大公司瓜分。截至2015年第二季度,NVIDIA市场份额已达到82%。谷歌无人驾驶汽车所采用的技术部件中,就采用了NVIDIA的移动终端处理器Tegra(4核CPU+256核GPU)。NVIDIA还专为智能汽车设计了两大平台:自动驾驶汽车平台DRIVEPX,数字座舱计算机DRIVE CX。

硬件加速:FPGA(可编程门阵列)利用硬件运算,具有显著速度优势。FPGA内部包含大量重复的IOB(输入输出模块)、CLB(可配置逻辑块,内部是基本的逻辑门电路,与门、或门等)和布线信道等基本单元。FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此运行速度非常高,可达CPU的40倍。而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。

FPGA国际市场:四大厂商垄断。目前在全球市场中,Xilinx、Altera两大公司对FPGA的技术与市场占据绝对垄断地位,两家公司占有将近90%市场份额,专利达6000余项之多。剩余市场份额主要被Lattice和Microsemi所占有,这两家的专利也达3000多项。2014年Xilinx、Altera两大公司营业收入分别为23.8亿美元和19.3亿美元;而Lattice和Microsemi(仅FPGA部分)收入分别为3.66亿美元和2.75亿美元。

专用加速:ASIC(专用集成电路)是针对专门应用而设计的集成电路。ASIC是针对特定工作负载时速度最快且执行效率最高的处理方案。与通用集成电路相比,ASIC具有体积更小、功耗更低、性能提高、保密性增强、成本低等优点。

谷歌专用定制化芯片TPU:服务于AlphaGo等人工智能技术。今年5月的I/O大会上,谷歌披露了其以ASIC为基础的定制化芯片TPU(TensorProcessing Unit,张量处理器),并明确表示这款芯片不会对外销售。TPU为谷歌人工智能做出了许多贡献:1)机器学习人工智能系统RankBrain,用来帮助谷歌处理搜索结果;2)街景Street View,用来提高地图与导航的准确性;3)围棋人工智能AlphaGo,其最初版本使用了48CPU+8GPU,随后的分布式版本使用了1202CPU+176GPU(即对战樊麾时的配置),几个月后硬件平台再次升级至TPU(即对战李世乭时的配置)。

寒武纪推出我国首款定制化神经网络处理器。寒武纪科技面向深度学习等人工智能关键技术进行专用芯片的研发,可用于云服务器和智能终端上的图像识别、语音识别、人脸识别等应用。

 

半导体芯片:执行端不可取代

以独立体系工作,占据芯片市场一席之地。半导体芯片功率半导体主要由集成电路和分立功率器件两部分组成。IGBT(InsulatedGate Bipolar Transistor)是纯电动车的核心模块,同时充电桩的建设也运用了大量的功率器件模块。据华虹宏力披露情况,到2020年我国年产新能源汽车预计达200万台,仅8寸的IGBT的芯片26万片之多。此外,据Yole Developpement 预计,2016-2022年SiC功率半导体市场规模的年均复合增速将达到38%。

资料来源:电动汽车网

瑞景通途低碳投资顾问有限公司国内领先的节能减排和新能源投资和咨询机构,专注于节能减排的细分市场,以金融机构、清洁技术和清洁能源企业为核心客户,提供专业的投资、融资和咨询服务。

“瑞景观点”聚焦节能减排及新能源领域,独树一帜的行业观点,时新热辣行业资讯,深入行业政策剖析,优质项目与资金信息交流。

官网:http://www.decarbonfund.com/

联系方式:consulting@decarbonfund.com

 

新朋友:点击标题下方蓝色字“瑞景观点”一键关注

老朋友:点击右上角,转发或分享本文内容


    关注 瑞景观点


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册