TFT-LCD技术、工艺详解

 

TFT-LCD液晶显示器的工作原理x0a在薄膜晶体管液晶显示器(TFT-LCD)中,TFT的功能就是一个开...



TFT-LCD液晶显示器的工作原理

  • 在薄膜晶体管液晶显示器(TFT-LCD)中,TFT的功能就是一个开关管。常用的TFT是三端器件。在玻璃基板上制作半导体层,在两端有与之相连接的源极和漏极。并通过栅极绝缘膜,与半导体相对置,利用施加于栅极的电压来控制源、漏电极间的电流。对于显示屏来说,每个像素从结构上可以看作为像素电极和共同电极之间夹一层液晶。更重要的是从电的角度可以把它看作电容。其等效电路为图1所示。要对j行i列的像素P(i,j)充电,就要把开关T(i,j)导通,对信号线D(i)施加目标电压。当像素电极被充分充电后,即使开关断开,电容中的电荷也得到保存,电极间的液晶分子继续有电场作用。数据(列)驱动器的作用是对信号线施加目标电压,而栅极(行)驱动器的作用是起开关的导通和断开。由于加在液晶层上的电压可存储使液晶层能稳定地工作。这个显示电压通过TFT也可在短时间内重新写入,因此,即使对高清晰度LCD,也能满足图像品质要求。显示图像的关键还在于液晶在电场作用下的分子取向。一般通过对基板内侧的取向处理,使液晶分子的排列产生希望的形变来实现不同的显示模式。在电场作用下,液晶分子产生取向变化,并通过与偏振片的配合,使入射光在通过液晶层后强度发生变化。从而实现图像显示。薄膜晶体管液晶显示器与无源TN-LCD、STN-LCD的简单矩阵不同,它在液晶显示屏的每一个象素上都有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使之显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。而开关单元(即TFT)的特性,则要满足通态电阻低,闭态电阻非常大这一要求。薄膜晶体管液晶显示器彩色化则一般是通过加一层彩色滤光片,在显示器的前面板上实现。它要求在每个像素上制作红、绿、蓝三色和遮光用黑矩阵。

TFT-LCD液晶显示器的主要优点

  • 随着九十年代初TFT技术的成熟,彩色液晶平板显示器迅速发展,不到10年的时间,TFT-LCD迅速成长为主流显示器,这与它具有的优点是分不开的。主要特点是:(1)使用特性好低压应用,低驱动电压,固体化使用安全性和可靠性提高;平板化,又轻薄,节省了大量原材料和使用空间;低功耗,它的功耗约为CRT显示器的十分之一,反射式TFT-LCD甚至只有CRT的百分之一左右,节省了大量的能源;TFT-LCD产品还有规格型号、尺寸系列化,品种多样,使用方便灵活、维修、更新、升级容易,使用寿命长等许多特点。显示范围覆盖了从1英寸至40英寸范围内的所有显示器的应用范围以及投影大平面,是全尺寸显示终端;显示质量从最简单的单色字符图形到高分辨率,高彩色保真度,高亮度,高对比度,高响应速度的各种规格型号的视频显示器;显示方式有直视型,投影型,透视式,也有反射式。(2)环保特性好无辐射、无闪烁,对使用者的健康无损害。特别是TFT-LCD电子书刊的出现,将把人类带入无纸办公、无纸印刷时代,引发人类学习、传播和记栽文明方式的革命。(3)适用范围宽从-20℃到+50℃的温度范围内都可以正常使用,经过温度加固处理的TFT-LCD低温工作温度可达到零下80℃。既可作为移动终端显示,台式终端显示,又可以作大屏幕投影电视,是性能优良的全尺寸视频显示终端。(4)制造技术的自动化程度高大规模工业化生产特性好。TFT-LCD产业技术成熟,大规模生产的成品率达到90%以上。(5)TFT-LCD易于集成化和更新换代是大规模半导体集成电路技术和光源技术的完美结合,继续发展潜力很大。目前有非晶、多晶和单晶硅TFT-LCD,将来会有其它材料的TFT,既有玻璃基板的又有塑料基板。

TFT-LCD液晶显示器制造工艺过程

  • 薄膜晶体管液晶显示器(TFT-LCD)通常采用两个加工过程并行进行加工成成品,如图1所示。其基本工艺如下:
    ● 通过前玻璃基板/彩色滤光基板工艺过程形成精确排列的彩色滤光层。●薄膜基板工艺形成薄膜晶体管液晶(TFT)阵列及显示器像素控制所用其它电子元件。每个像素一般对应三个薄膜晶体管液晶(TFT),每个像素控制一个共同构成一个像素的“色点”。薄膜形成工艺采用与半导体制造技术相类似的CVD、Etch及PVD等工艺技术。此类工艺步骤应反复数次,连续膜层方可形成一个功能元件(图2)。● 两块基板合二为一,中间注入液晶材料。● 最后组装背光及驱动电子元件,制造出TFT-LCD 模块。

TFT-LCD液晶显示器的工艺技术

  • 薄膜晶体管液晶显示器的制造工艺有以下几部分:在TFT基板上形成TFT阵列;在彩色滤光片基板上形成彩色滤光图案及ITO导电层;用两块基板形成液晶盒;安装外围电路、组装背光源等的模块组装。1. 在TFT基板上形成TFT阵列的工艺现已实现产业化的TFT类型包括:非晶硅TFT(a-Si TFT)、多晶硅TFT(p-Si TFT)、单晶硅TFT(c-Si TFT)几种。目前使用最多的仍是a-Si TFT。a-SiTFT的制造工艺是先在硼硅玻璃基板上溅射栅极材料膜,经掩膜曝光、显影、干法蚀刻后形成栅极布线图案。一般掩膜曝光用步进曝光机。第二步是用PECVD法进行连续成膜,形成SiNx膜、非掺杂a-Si膜,掺磷n+a-Si膜。然后再进行掩膜曝光及干法蚀刻形成TFT部分的a-Si图案。第三步是用溅射成膜法形成透明电极(ITO膜),再经掩膜曝光及湿法蚀刻形成显示电极图案。第四步栅极端部绝缘膜的接触孔图案形成则是使用掩膜曝光及干法蚀刻法。第五步是将AL等进行溅射成膜,用掩膜曝光、蚀刻形成TFT的源极、漏极以及信号线图案。最后用PECVD法形成保护绝缘膜,再用掩膜曝光及干法蚀刻进行绝缘膜的蚀刻成形,(该保护膜用于对栅极以及信号线电极端部和显示电极的保护)。至此,整个工艺流程完成。TFT阵列工艺是TFT-LCD制造工艺的关键,也是设备投资最多的部分。整个工艺要求在很高的净化条件(例如10级)下进行。2. 在彩色滤光片(CF)基板上形成彩色滤光图案的工艺彩色滤光片着色部分的形成方法有染料法、颜料分散法、印刷法、电解沉积法、喷墨法。目前以颜料分散法为主。颜料分散法的第一步是将颗粒均匀的微细颜料(平均粒径小于0.1μm)(R、G、B三色)分散在透明感光树脂中。然后将它们依次用涂敷、曝光、显影工艺方法,依次形成R. G. B三色图案。在制造中使用光蚀刻技术,所用装置主要是涂敷、曝光、显影装置。为了防止漏光,在RGB三色交界处一般都要加黑矩阵(BM)。以往多用溅射法形成单层金属铬膜,现在也有改用金属铬和氧化铬复合型的BM膜或树脂混合碳的树脂型BM。此外,还需要在BM上制做一层保护膜及形成IT0电极,由于带有彩色滤光片的基板是作为液晶屏的前基板与带有TFT的后基板一起构成液晶盒。所以必须关注好定位问题,使彩色滤光片的各单元与TFT基板各像素相对应。3. 液晶盒的制备工艺首先是在上下基板表面分别涂敷聚酰亚胺膜并通过摩擦工艺,形成可诱导分子按要求排列的取向膜。之后在TFT阵列基板周边布好密封胶材料,并在基板上喷洒衬垫。同时在CF基板的透明电极末端涂布银浆。然后将两块基板对位粘接,使CF图案与TFT像素图案一一对正,再经热处理使密封材料固化。在印刷密封材料时,需留下注入口,以便抽真空灌注液晶。近年来,随着技术进步和基板尺寸的不断加大,在盒的制做工艺上也有很大的改进,比较有代表性的是灌晶方式的改变,从原来的成盒后灌注改为ODF法,即灌晶与成盒同步进行。另外.垫衬方式也不再采用传统的喷洒法,而是直接在阵列上用光刻法制作。4. 外围电路、组装背光源等的模块组装工艺在液晶盒制作工艺完成后,在面板上需要安装外围驱动电路,再在两块基板表面贴上偏振片。如果是透射型LCD.还要安装背光源。
具体如下:

Array Process(阵列制程)









实际的工厂生产流程为:

先把制程分为CF和TFT两部分,如图:

TFT-LCD的具体制作流程

  •   一、TFT阵列式基板形成阶段TFTarray之制程主要清洗,成膜,而后黄光制板,后再经蚀刻制程形成所要的图样,然后依光罩数而作循环制程,在这循环制程中要先将洗净的玻璃基板送进溅镀机台镀上一层金属后,再用黄光及蚀刻制程形成闸极,区域图样,隋后玻璃基板经光阻剥离洗净,再以薄膜区电浆辅助化学相沉积机台形成用作主动区域,经过一系列的协作.后以薄膜区化学气相沉积杨台上形成TFT区域保护层,挖出接角也洞,再溅镀上一层氧化锢锡膜(ITO),再用黄光及蚀刻区制程形成画素区域图样而在这循环制程中以后通TFT蚀刻制程为主要步骤.TFT的结构依闸,源,汲极沉积的先后顺序,大致可分为四类,如图,目前正在产量TFT多是以反转堆叠式结构为主,而因它构造简单及制程容易则广泛被TFT制造业者所采用,又由於制程有差异分为:1)后通道蚀刻TFT,2)后通护TFT或再称为三层结构TFT.TFT的制作流程关键步骤是蚀刻后通道端的N型非晶矽.以形成闸极可控制的通道,这一般是干蚀刻法,而造成漏电流的原因可能后通道在作干鹿记得时容易造成物抟残留.
    二、TFT-LCD之形成阶段在TFT-LCD玻璃完成所有制程后,再配合上另一擤具有红,绿,蓝彩色滤光膜的玻璃,先配向膜刷,配向处理,间隔物的涂布及上框胶之后再进行两片玻璃上下封组,切割裂片磨边导角,清洗,再进行液晶注入及封口,最后再目检及电测,其中最重要的步骤如下:1、配向处理目前所采用的配全处理方法是刷磨处理,主要是以卷在金属滚轴的绒布刷磨烧制后的配向膜,使液晶分子能预先朝一定方向的方法.2、间隔物的洒布目的是为了获得均匀的液晶厚度,它分散的密度高的话可以得到较均匀的CELLGAP,若间隔物有漏光时会降低品质,反之,间隔物分散度越低时便无法得均匀的CELLGAP,也会影响品质.因此适量均匀的间隔物洒布非常重要,目前以洒式散布法较容易控制密度,要先做好洒上间隔物,固上框胶后才可以进行CF及TFT的封准组合.3、面板切割以TFT与CF的封准组合再以超硬质钢刀滚轮切割再压裂的方式得到每一片面板.以后隋着外型,大小及模组外型的狭框化,薄型化的发展,以超硬质钢刀无法潢足要求,以后以雷射切割的方式.4、液晶注入I将玻璃在机台上用外框固定好,用直下式的方法注入液晶注入液晶时,应注意避免造成spacer  broken及spacer聚集.)II先让CELL内部真空化后,将CELL的液晶注放口浸入液晶槽中,再以氮气 作破真空的动作,内外压力差与毛细现会使液晶注入CELL内部当液晶注入时的形状及排列方式Spacer  broken:是注入液晶时,液晶颗粒大,两片玻璃压合时产生破裂.Spacer聚集:注入液晶时,液晶有大颗的也有小颗,由於液晶太小在中槽中会滚动,几颗碰到一起就形成了Spacer聚集.5、目检及电测液晶CELL工程主要的检查是液晶注入后的配向检查,初期点灯检查与最终检查而这些检查都是以目视进行.三、LCD模组形成阶段模组制程包括戏动晶片玻璃基板的连接,可烧式印刷电路,压着,封胶,机壳与背光源组装及检测.
液晶技术是如何工作的:

液晶通过不同的排列模式来工作,采用多区域垂直排列模式(MVA模式)和面内切换模式(IPS模式)使液晶平板显示的水平视角都达到了170度。MVA模式还使响应时间缩短到20ms。
(a) TN+Film
从技术角度来看,TN+Film解决方案是最简单的一种,TFT显示器制造商将过去用于老式LCD显示器的扭曲向列(TN:Twisted

Nematic)技术,同TFT技术相结合,从而有了TN+Film技术。这项技术主要就是通过显示屏覆盖一层特殊的薄膜,来扩大可视角度——可以把可视角度从90度扩大到大约140度。TN+Film同标准TFT显示器一样都是通过排列液晶分子来实现对图象的控制,它在上表面覆盖一层薄膜来增大可视角度。

不过TFT显示器相对弱的对比度和缓慢的反应时间这些缺点仍然没有改变。所以TN+Film这种方式并不是做好的解决方案,除了它的造价最便宜之外没有任何可取之处。
(b)IPS(In-Plane Switching)
IPS就是In-Plane

Switching的简称,意思就是平板开关,又称为Super

TFT。最早由Hitachi(日立)开发,现在NEC和Nokia也使用此项技术制成显示器。这项技术同扭曲向列显示器(TN-Film)的不同就在于液晶分子相对于基本排列方式不同,如图7,当加上电压之后液晶分子与基板平行排列。采用这项技术的显示器的可视角度达到了170度,已经同阴极射线管的可视角度相当了,不过这项技术也有缺点:为了能让液晶分子平行排列,电极不能象扭曲向列显示器(TN-Film)一样,在两层基板上都有,只能放在低层的基板上——这样导致的直接结果就是显示器的亮度和对比度明显的下降,为了提高亮度和对比度,只有增强背光光源的亮度。这样一来,反应时间和对比度相对于普通TFT显示器而言更难提高了。所以这项技术似乎也不是最好的解决方案。
(c)MVA(Multi-Domain Vertical Alignment)
MVA多区域垂直排列技术,是由日本富士通(Fujitsu)公司开发的,单从技术的角度看,它兼顾了可视角度和反应时间两个方面。找到了一个折中的解决方法。MVA技术使得可视角达到了160度——

虽然不如IPS能达到的170度的可视角度,不过它`仍然是好的,因为这项技术能够提供更好的对比度和更短的反应时间。
MVA中的M代指“multi-domains” —— 多区域的意思。图8所示,那些紫色的突起(protrusion)构成了所谓的区域。富士通目前生产的MAV显示器中一般就有这样4个区域。
VA是“vertical

alignment”的简称,意为垂直排列。不过单从字面上看会产生一些误解,因为液晶分子并不是如图所示的“突起”(protrusion)完全垂直。请看图8所示黑色示意图。当电压生成一个电场时,液晶分子如图相互平行排列,这样背光光源就能穿过,而且能将光线向各个方向发散,从而扩大了可视角度。
另外,MVA还提供了比IPS和TN+Film技术都快的反应时间,这对于取得良好的视频回收和残视觉效果都是非常重要的。MVA液晶显示器的对比度也有所提高,不过同样也会随着可视度的变换而变化。
在采用光学补偿弯曲技术(OCB)的基础上发展起来的场序列全彩色(FSFC)LCD技术不仅取消了占成本三分之一的彩色滤光膜(CF),还可使分辨率提高3倍,透过率提高5倍,同时简化了工艺,降低了成本。彩膜技术和背光源技术的发展使tft屏的彩色再现能力达到甚至超过了CRT。作为商品显示器tft屏的主要技术指标综合性能在各类显示器件中是最优秀的,特别是tft屏产品的大规模生产技术的完善,多品种、多系列的产品发展空间,应用范围无所不至



下图是TFT屏的典型时序:

其中VSYNC是帧同步信号,VSYNC每发出1个脉冲,都意味着新的1屏视频资料开始发送。而HSYNC为行同步信号,每个HSYNC脉冲都表明新的1行视频资料开始发送。而VDEN则用来标明视频资料的有效,VCLK是用来锁存视频资料的像数时钟。
并且在帧同步以及行同步的头尾都必须留有回扫时间,例如对于VSYNC来说前回扫时间就是(VSPW+1)+(VBPD+1),后回扫时间就是(VFPD+1);HSYNC亦类同。这样的时序要求是当初CRT显示器由于电子枪偏转需要时间,但后来成了实际上的工业标准,乃至于后来出现的TFT屏为了在时序上于CRT兼容,也采用了这样的控制时序。

TFT-LCD驱动电路的设计

将VGA接口信号转换到模拟液晶屏上显示驱动电路,采用ADI公司高性能DSP芯片ADSP-21160来实现驱动电路主要功能。

硬件电路设计

AD9883A是高性能三通道视频ADC可以同时实现对RGB三色信号实时采样。系统采用32位浮点芯片ADSP-21160来处理数据,能实时完成伽玛校正、时基校正、图像优化等处理,且满足了系统各项性能需求。ADSP-21160有6个独立高速8位并行链路口,分别连接ADSP-21160前端模数转换芯片AD9883A和后端数模转换芯片ADV7125。ADSP-21160具有超级哈佛结构,支持单指令多操作数(SIMD)模式,采用高效汇编语言编程能实现对视频信号实时处理,不会因为处理数据时间长而出现延迟。

系统硬件原理框图如图1所示。系统采用不同链路口完成输入和输出,可以避免采用总线可能产生通道冲突。模拟视频信号由AD9883A完成模数转换。AD9883A是个三通道ADC,因此系统可以完成单色视频信号处理,也可以完成彩色视频信号处理。采样所得视频数字信号经链路口输入到ADSP-21160,完成处理后由不同链路口输出到ADV7125,完成数模转换。ADV7125是三通道DAC,同样也可以用于处理彩色信号。输出视频信号到灰度电压产生电路,得到驱动液晶屏所需要驱动电压。ADSP-21160还有通用可编程I/O标志脚,可用于接受外部控制信号,给系统及其模块发送控制信息,以使整个系统稳定有序地工作。例如,ADSP-21160为灰度电压产生电路和液晶屏提供必要控制信号。另外,系统还设置了一些LED灯,用于直观指示系统硬件及DSP内部程序各模块工作状态。
图1 系统硬件原理框图

本设计采用从闪存引导方式加载DSP程序文件,闪存具有很高性价比,体积小,功耗低。由于本系统中闪存既要存储DSP程序,又要保存对应于不同伽玛值查找表数据以及部分预设显示数据,故选择ST公司容量较大M29W641DL,既能保存程序代码,又能保存必要数据信息。

图2为DSP与闪存接口电路。因为采用8位闪存引导方式,所以ADSP-21160地址线应使用A20~A0,数据线为D39~32,读、写和片选信号分别接到闪存相应引脚上。
图2 DSP和Flash接口电路

系统功能及实现

本设计采用ADSP-21160完成伽玛校正、时基校正、时钟发生器、图像优化和控制信号产生等功能。

伽玛校正原理

在LCD中,驱动IC/LSIDAC图像数据信号线性变化,而液晶电光特性是非线性,所以要调节对液晶所加外加电压,使其满足液晶显示亮度线性,即伽玛(γ)校正。γ校正是一个实现图像能够尽可能真实地反映原物体或原图像视觉信息重要过程。利用查找表来补偿液晶电光特性γ校正方法能使液晶显示系统具有理想传输函数。未校正时液晶显示系统输入输出曲线呈S形。伽玛表作用就是通过对ADC进来信号进行反S形非线性变换,最终使液晶显示系统输入输出曲线满足实际要求。

LCDγ校正图形如图3所示,左图是LCD电光特性曲线图,右图是LCD亮度特性曲线和电压模数转换图。
图3 LCDγ校正示意图

伽玛校正实现

本文采用较科学γ校正处理技术,对数字三基色视频信号分别进行数字γ校正(也可以对模拟三基色视频信号分别进行γ校正)。在完成γ校正同时,并不损失灰度层次,使全彩色显示屏图像更鲜艳,更逼真,更清晰。

某单色光γ调整过程如图4所示,其他二色与此相同。以单色光γ调整为例:ADSP-21160

首先根据外部提供一组控制信号,进行第一次查表,得到γ调整系数(γ值)。然后根据该γ值和输入显示数据进行第二次查表,得到经校正后显示数据。第一次查表γ值是通过外部控制信号输入到控制模块进行第一次查表得到。8位显示数据信号可查表数字0~255种灰度级显示数据(γ校正后)。
图4 单色光γ调整过程

图像优化

为了提高图像质量,ADSP-21160内部还设计了图像效果优化及特技模块,许多在模拟处理中无法进行工作可以在数字处理中进行,例如,二维数字滤波、轮廓校正、细节补偿频率微调、准确彩色矩阵(线性矩阵电路)、黑斑校正、g校正、孔阑校正、增益调整、黑电平控制及杂散光补偿、对比度调节等,这些处理都提高了图像质量。

数字特技是对视频信号本身进行尺寸、位置变化和亮、色信号变化数字化处理,它能使图像变成各种形状,在屏幕上任意放缩、旋转等,这些是模拟特技无法实现。还可以设计滤波器来滤除一些干扰信号和噪声信号等,使图像清晰度更高,更好地再现原始图像。所有信号和数据都是存储在DSP内部,由它内部产生时钟模块和控制模块实现。

时基校正及系统控制

由于ADSP-21160内部各个模块功能和处理时间不同,各模块之间存在一定延时,故需要进行数字时基校正,使存储器最终输出数据能严格对齐,而不会出现信息重叠或不连续。数字时基校正主要用于校正视频信号中行、场同步信号时基误差。首先,将被校正信号以它时基信号为基准写入存储器,然后,以TFT-LCD时基信号为基准读出,即可得到时基误差较小视频信号。同时它还附加了其他功能,可以对视频信号色度、亮度、饱和度进行调节,同时对行、场相位、负载波相位进行调节,并具有时钟台标功能。

控制模块主要负责控制时序驱动逻辑电路以管理和操作各功能模块,如显示数据存储器管理和操作,负责将显示数据和指令参数传输到位,负责将参数寄存器内容转换成相应显示功能逻辑。内部信号发生器产生控制信号及地址,根据水平和垂直显示及消隐计数器值产生控制信号。此外,它还可以接收外部控制信号,以实现人机交互,从而使该电路功能更加强大,更加灵活。

此外,ADSP21160内部还设计了I2C总线控制模块,模拟I2C总线工作,为外部具有I2C接口器件提供SCLK(串行时钟信号)和SDA(双向串行数据信号)。模拟I2C工作状态如图5和图6所示。
图5 串行端口读/写时序
图6串行接口-典型字节传送

系统软件实现

在软件设计如图7所示,采用Matlab软件计算出校正值,并以查找表文件形式存储,供时序调用。系统上电开始,首先要完成ADSP-21160一系列寄存器设置,以使DSP能正确有效地工作。当ADSP-21160接收到有效视频信号以后,根据外部控制信息确定γ值。为适应不同TFT-LCD屏对视频信号显示,系统可以通过调整γ值,以调节显示效果到最佳。再如图4所示,对先前预存文件进行查表,得到所需矫正后值,然后暂存等待下一步处理。系统还可以根据视频信号特点和用户需要完成一些图像优化和特技,如二维数字滤波、轮廓校正、增益调整、对比度调节等。这些操作可由用户需求选择性使用。利用ADSP-21160还可以实现图像翻转、停滞等特技。最后进行数字时基校正,主要用于校正视频信号中行、场同步信号时基误差,使存储器最终输出数据能严格对齐,而不会出现信息重叠或不连续。除了以上所述主要功能以外,ADSP-21160还根据时序控制信号,为灰度电压产生电路和TFT-LCD屏提供必要控制信号。另外,ADSP-21160还能设置驱动通用I/O脚配置LED灯,显示系统工作状态。
图7 软件流程图


    关注 ctplcd


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册