微中子第0集--微中子到底是什么?

 

中微子(意大利语:Neutrino,其字面上的意义为“微小的电中性粒子”,又译作微中子)是一种电中性的基本粒...






中微子
(意大利语:Neutrino,其字面上的意义为“微小的电中性粒子”,又译作微中子)是一种电中性的基本粒子,自旋量子数为½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。[5]

中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子(ν
e)、μ中微子(ν
μ)以及τ中微子(ν
τ)。每种味的中微子都相应存在一种同样电中性且自旋量子数为½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。

由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。

中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。

人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。

泡利的假设

1930年,沃尔夫冈·泡利为了解释β衰变中能量、动量以及自旋角动量守恒而提出了中微子假说。与尼尔斯·玻尔从统计角度上给出的解释不同,他认为在衰变过程中伴随着电子,还会产生一种当时尚未发现的一种电中性的粒子。他当时将这种粒子称为“中子”。玻尔非常反对这种解释并且准备承认β衰变中能量、动量以及自旋角动量并不守恒。

1932年,詹姆斯·查德威克发现了一种具有较大质量的核子,并也将其命名为中子。这让这两种性质殊异的粒子具有了相同的名字。这种情形让泡利不得不重新为他所构想的粒子命名。“中微子”这个术语是经由恩里科·费米和泡利本人在1932年7月于巴黎举行的一次会议以及1933年10月举行的索尔维会议上提出的倡议而被国际科学界接受的。这一术语最初是由爱德华多·阿马尔迪在一次与费米的对话中半开玩笑式地引入的。

然而,直到1933年仍没有足够证据辩驳玻尔的β衰变并不遵循能量守恒的想法。在这一年的索尔维会议上,泡利表示,如果β衰变的能谱具有明确的上限,则能量守恒;如果β衰变中能量不守恒的话,这一上限不可能存在。对于这一现象的较为自然的解释就是一种新的粒子会在这一上限内获得不定量的能量,将剩下的能量留给其他粒子。泡利建议,物理学者应该仔细检试β衰变的能谱是否具有明确的上限。在会议上发布的结果是,β衰变的能谱的确具有明确的上限。泡利据此向参会者郑重宣布,“中微子”确实存在。

依据费米对于β衰变的解释,查德威克所发现的较大的中性粒子会衰变为一个质子、一个电子以及一个较小的中性粒子(现在依据它的“味”将其称为反电子中微子):

  • n0→ p++ e−+ νe
费米在其1934年发表的一篇论文中统合了泡利提出的中微子假说,保罗·狄拉克提出的正电子理论以及维尔纳·海森堡提出的中子–质子模型,并为将来的粒子物理相关实验提出了坚实的理论基础。然而《自然》杂志拒绝登载费米的论文,给出的理由为费米的理论“与现实相差太远”。这篇论文最后发表在一部意大利语的期刊上。费米被这事件搞得心灰意冷,因此转投实验物理学的相关工作。[10]:24[11]但是,费米的理论并没有被学术界忽略,自此,玻尔不再坚持β衰变违反能量守恒,实验检试中微子的大门也被开启。

更多好玩的请关注我们的公众号:open_brain



    关注 大开脑洞


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册