【学生作业】磁控溅射镀膜技术的发展

 

磁控溅射是直接镀铜工艺(DPC)与薄膜电路工艺(TFHI)中的重点工艺。真空条件,利用Ar气体辉光放电产生的...





控溅射是直接镀铜工艺(DPC)与薄膜电路工艺(TFHI)中的重点工艺。真空条件,利用Ar气体辉光放电产生的Ar正离子与靶材撞击,将靶材从源材料移向衬底,实现薄膜的淀积。再通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。



磁控溅射操作顺序



平衡磁控溅射

平衡磁控溅射即传统的磁控溅射,是在阴极靶材背后放置芯部与外环磁场强度相等或相近的永磁体或电磁线圈,在靶材表面形成与电场方向垂直的磁场。沉积室充入一定量的工作气体,通常为Ar,在高压作用下Ar原了电离成为Ar+离子和电子,产生辉光放电,Ar+离子经电场加速轰击靶材,溅射出靶材原子、离子和二次电子等。电子在相互垂直的电磁场的作用下,以摆线方式运动,被束缚在靶材表面,延长了其在等离子体中的运动轨迹,增加其参与气体分子碰撞和电离的过程,电离出更多的离子,提高了气体的离化率,在较低的气体压力下也可维持放电,因而磁控溅射既降低溅射过程中的气体压力,也同时提高了溅射的效率和沉积速率。

平衡磁控溅射的缺点是有效镀膜区较短,限制了待镀工件的几何尺寸,不适于较大的工件或装炉量,制约了磁控溅射技术的应用。且在平衡磁控溅射时,飞出的靶材粒子能量较低,膜基结合强度较差,低能量的沉积原子在基体表面迁移率低,易生成多孔粗糙的柱状结构薄膜。



非平衡磁控溅射

非平衡磁控溅射系统有两种结构,一种 是其芯部磁场强度比外环高,磁力线没有闭合,被引向真空室壁,基体表面的等离子体密度低,因此该方式很少被采用。另一种是外环磁场强度高于芯部磁场强度,磁力线没有完全形成闭合回路,部分外环的磁力线延伸到基体表面,使得部分二次电子能够沿着磁力线逃逸出靶材表面区域,同时再与中性粒子发生碰撞电离,等离子体不再被完全限制在靶材表面区域,而是能够到达基体表面,进一步增加镀膜区域的离子浓度,使衬底离子束流密度提高,通常可达5mA/cm2以上。这样溅射源同时又是轰击基体表面的离子源,基体离子束流密度与靶材电流密度成正比,靶材电流密度提高,沉积速率提高,同时基体离子束流密度提高,对沉积膜层表面起到一定的轰击作用。

反应磁控溅射

反应磁控溅射技术是沉积化合物薄膜的主要方式之一。沉积多元成分的化合物薄膜,可以使用化合物材料制作的靶材溅射沉积,也可以在溅射纯金属或合金靶材时,通入一定的反应气体,如氧气、氮气,反应沉积化合物薄膜,后者被称这反应溅射。通常纯金属靶和反应气体较容易获得很高的纯度,因而反应溅射被广泛的应用沉积化合物薄膜。

中频磁控溅射

将直流磁控溅射电源改为交流中频电源即成为中频磁控溅射。在中频反应溅射过程中,当靶上所加的电压处在负半周期时,靶材表面被正离子轰击溅射,在正半周期,等离子体中的电子加速飞向靶材表面,中和了靶材表面沉积化合物层累积的正电荷,从而抑制了打弧现象的发生。在确定的工作场强下,频率越高,等离子体中正离子被加速的时间越短,正离子从外电场吸收的能量就越少,轰击靶时的能量就越低,溅射速率就会下降,因此为了维持较高的溅射速度,中频反应溅射电源的 频率一般为10~80kHz。中频磁控溅射常同时溅射两个靶,并排配置的两个靶的尺寸与外形完全相同,通常称为孪生靶如下图所示。在溅射过程中,两个靶周期性轮流作为阴极和阳极,既抑制了靶面打火,而且消除普通直流反应溅射是阳极消失现象,使溅射过程得以稳定进行。



脉冲磁控溅射

脉冲磁控溅射是采用矩形波电压的脉冲电源代替传统直流电源进行磁控溅射沉积。脉冲磁控溅射技术可以有效的抑制电弧产生进而消除由此产生的薄膜缺陷,同时可以提高溅射沉积速率,降低沉积温度等一系列显著优点。

脉冲可分为双向脉冲和单向脉冲(如图下)。双向脉冲在一个周期内存在正电压和负电压两个阶段,在负电压段,电源工作于靶材的溅射,正电压段,引入电子中和靶面累积的正电荷,并使表面清洁,裸露出金属表面。



若要更多地了解本篇文章中介绍的磁控溅射工艺,可参见余东海等人的《磁控溅射镀膜技术的发展》。


    关注 钰芯力道


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册