名厨烹制单分子技术透视生命之谜

 

2015年7月18日,谢晓亮应邀在“未来论坛”上发表题为“单分子水平上的生命——通往精准医学之路”的演讲,回...





2015年7月18日,谢晓亮应邀在“未来论坛”上发表题为“单分子水平上的生命——通往精准医学之路”的演讲,回顾并展望了他在单分子基因组学上的基础研究和生物医学应用的探索之路。

背景介绍

2012和2013年,由北京大学多个研究团队合作完成的世界首个高精度人类男性和女性个人遗传图谱相关论文相继发表于《科学》和《细胞》杂志。这一工作采用的单细胞DNA扩增技术MALBAC,与以前的技术相比,该技术将单细胞全基因组测序的精确度大幅度提高,以至于能够发现个别细胞之间的遗传差异。

MALBAC技术是由北京大学生物动态光学成像中心(BIOPIC)主任、哈佛大学终身教授、美国科学院院士谢晓亮领导的团队发明。他们的工作不仅大大拓展了单细胞基因组学研究技术,而且给现代医学带来了革命性的突破,是“精准医学”的一个最佳范例 。

通过与BIOPIC的汤富酬教授团队、北京大学第三医院院长乔杰团队的合作,2014年下半年,两对携带遗传疾病致病基因的夫妇在MALBAC技术的帮助下成功生下了健康的婴儿。此外,MALBAC技术还正在用于探索针对肿瘤患者的个体化诊断和治疗方案。

北京大学生命科学院饶毅教授在现场介绍谢晓亮时说:“谢晓亮的第一个基础研究工作是1998年开展的单分子酶学,他开创了在单分子层面对生命过程的研究。近年他又开始探探索在医学上的应用。中国引进现代医学后,在现代药学方面只有少数几个药物作用领域的发现,在现代医学技术上唯一的发明和应用就是谢晓亮和汤富酬、乔杰三个团队合作诞生的‘MALBAC婴儿’。”

演讲内容(有删选):

单分子成像技术开启研究生涯

我在北大读本科时学的是化学,生物是到美国才学的。我1985年离开北大,来到美国加州大学圣地亚哥分校,攻读物理化学博士学位。我因从小就喜欢动手,在美国学的是用超快激光来研究化学反应动力学。

90年代初,我在美国太平洋西北国家实验室开始了我的独立研究生涯,带领一个团队研究在常温下用荧光来检测单个分子(见上图)。当时的研究非常令人兴奋,有几个小组在竞争,去年因为超分辨率荧光显微技术获得诺贝尔化学奖的两位科学家Eric Betzig和W.E. Moerner那时也在做同样的事。1994年7月,我第一次在《科学》杂志上发表了文章,研究单分子的动态过程。在此前的研究生和博士后阶段,我还没在《科学》或《自然》杂志上发表过文章。

这篇文章是和我的第一个博士后Bob Dunn合作的。当我们把这些技术发展起来以后,我有了一个预感,单分子技术在生物化学和分子生物学上将有重要的应用。所以我们就开始研究酶。

大家知道,20世纪最重要的生物学发现是沃森(Watson)和克里克(Crick)解出遗传分子DNA的双螺旋结构。DNA是由四种碱基(A、T和C、G)配对构成的。遗传信息储存在碱基的序列里。

单分子酶学也具有实际应用意义。比如有人做了与我们类似的实验,造出了两个单分子DNA测序仪,其中一个美国加州的公司做的Pacbio测序仪,通过监测单个合成DNA的酶分子,将有荧光标记的四个碱基逐个加入到DNA模版上,以直接读取DNA分子的序列。这个技术的特点是它能够测很长的DNA序列。

在基础研究领域,单分子生物学增进了我们对许多生物大分子工作机理的深入了解,让我们在活细胞里直接观测蛋白质分子的逐个产生。分子生物学的中心法则告诉我们,在DNA上的遗传基因会转录成mRNA,在翻译过程中mRNA导致蛋白质的合成。

由于一个基因在单个活细胞里只有1到2个拷贝,基因表达过程就跟单个酶分子反应一样,也是随机发生的,所以单分子生物学与单细胞生物学是密切相关的。我们对单个活细胞的基因表达进行了非常详细的研究,从而使得分子生物学的中心法则得到了定量的描述。

破解基因组的奥秘

2001年人类基因组计划完成,也就是这30亿对碱基的顺序被测定了,这是人类历史上的一个里程碑,意义重大。

如今十几年过去了,测序仪技术有了突飞猛进的发展。2007年以来,新一代的DNA测序仪层出不穷,主要是因为CCD(电荷耦合元件)的应用,使得大家可以在很多不同的位置上观测大量的序列,提高测序通量,这样一来,测序价格的衰减比指数衰减还快。现在如果你想测你的基因组,一天之内就可以完成,价格大概1000美金。其中Illumina公司的仪器占据了90%的市场。第三代测序仪是单分子测序仪,但它现在在成本、准确性和通量方面还不能与基于大量分子的DNA测序仪相竞争。

我的哈佛实验室也做过一个测序仪,但是我们起步比较晚,这是因为到哈佛以后要学怎么做教授,怎么教书,怎样申请基金。 我们只发表了一篇文章,没形成产品。中国目前还没有自己的测序仪,但就像中国需要自己的飞机一样,中国也需要自己的测序仪。这几年我和北大的黄岩谊教授一直在合作做这个工作。

哈佛实验室的新发明

新一代测序仪对医学的贡献是革命性的,它使个体化医疗成为可能。什么是个体化医疗?就是通过个人的基因组测序,为预防、检测和治疗疾病提供个体化的解决方案,所以基因测序成为了个体化医疗的基础。

一个著名的例子是,美国好莱坞影星安吉丽娜•茱莉公开宣布她切除了乳房,因为她知道自己携带一个有缺陷的基因BRAC1,她的医生估算过,她有87%的几率患乳腺癌,50%的几率患卵巢癌。她宣布切除乳房的这一天,是2013年5月13日,当时我正好在美国卫生局进行一个申请项目的答辩。我的实验室有一种技术,可以让父母避免把严重的遗传病遗传给胎儿。评审委员会听到朱莉的新闻后就问我,如果把我的技术用来避免把有缺陷的基因遗传给下一代,伦理上行不行?我当时还没想好,结果这个项目没有在美国启动。关于伦理问题,我到今天也没有一个好的答案。但我今天想告诉大家,我们这两年在北京大学的一个工作,是伦理上可以接受的。

这个新技术对我来讲是一个新的单分子实验。如果给我一个人的体细胞,我能告

第一种方法是PCR(聚合酶链式反应)技术,这是一个在1985年获得诺贝尔奖的技术,有单拷贝的高灵敏度。在犯罪现场,只要拿到一个DNA分子,我们就可以把信号放大到被检测的点。但是如果用它来覆盖全基因组,指数放大覆盖率只有6%。因为PCR技术是指数放大,让一个DNA变成两个,两个变成四个。这种指数放大过程不够精确,因为它是对拷贝进行拷贝,一旦拷贝件出错,错误就会被传下去,结果就不准了。

2012年,我在哈佛的实验室发明了新的单细胞扩增方法——“多重退火环状循环扩增法”(MALBAC)。它的最大优势是线性扩增,而不是指数扩增,不针对DNA拷贝再做拷贝,我们只拷贝原始DNA。就像一台复印机把原始的一份文件复制成多份,如果一次复制出错的话,在扩增后的产物里是微不足道的。哪怕单个细胞的30亿个碱基对里有一个碱基错了,我们都能看出来,而且没有假阳性。这种方法比此前广泛应用的MDA(多重置换扩增)方法能更准确地检测SNV(点突变)和CNV(拷贝数变异),将覆盖率大大提高到了93%。

做出这个工作的是我哈佛实验室的博士后宗诚航和我当时的博士研究生陆思嘉。目前,宗诚航正在 Baylor College of Medicine 做助理教授。陆思嘉在哈佛的博士论文就是关于MALBAC技术。他想看到他毕业论文的社会效应,所以两年前回国跟我创立了做单细胞测序的公司——亿康基因。他目前担任亿康基因的CTO。

MALBAC宝宝的诞生

世界上第一个试管婴儿诞生于1978年,迄今已有超过600万个孩子是通过试管婴儿技术出生的。Robert Edwards是试管婴儿的创始人,他于2013年去世了。然而直到他去世前两年,也就是2010年才荣获诺贝尔奖,并获得爵士封号。可以想象他当年的研究工作困难有多大,绝不仅仅是技术上的困难。

我们要做的实验是对单个人卵细胞进行高精度的全基因组测序分析。下图是一个卵母细胞,里面有两根DNA是从父亲来的,两根DNA是从母亲来的。刚才讲过,基因在重组时的交结点不一样,使得每个卵子和精子都不同。卵母细胞成熟过程中,会在旁边产生一个第一极体和第二极体作为卵细胞减数分裂的产物,它们分别是双倍体和单倍体,这两个极体细胞是没有用的,会在生殖细胞发育过程中被降解。我们为了不影响受精卵正常发育,所以选择分析两个极体细胞的全基因组来推断这个受精卵的全基因组是否正常。
不正常的第一种情况是染色体拷贝数不正常。 原因是细胞分裂时染色体分裂异常,即使父母完全健康。这种染色体不正常会导致生殖障碍或者唐氏综合症等遗传疾病。

还有一种情况,如果父亲或母亲的基因有点突变,导致严重的遗传疾病,它们也会传给下一代。如果发生突变的基因只在极体内,受精卵没有点突变,那就没事;如果传到了受精卵里,就会让下一代患上遗传疾病。

用MALBAC技术来进行单细胞基因组扩增,我们可以同时检测并避免上述两种情况,来提高生殖细胞健康发育的成功率,避免遗传疾病发生。具体做法就是用激光打一个小洞,把毛细血管插进去,吸出两个极体细胞来测序。如果疾病遗传自母亲, 我们用这个办法。如果疾病遗传自父亲,我们则在受精第5天时取1—3个囊胚细胞来测序。

2014年9月19日,世界首例MALBAC婴儿诞生了,我们去看这个孩子的时候,她真是完美,她一声都没哭,一直冲我笑。
总结一下,MALBAC技术可以同时避免染色体不正常和非常严重的基因点突变导致的遗传疾病,使得我们可以提高生殖的成功率,得到健康的后代。


    关注 BioBAY


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册