从10G到100G MPO光纤测试技术

 

10GMPO多芯光纤测试模型相比较传统使用LC,SC,ST等连接器的双芯光纤,使用MPO连接器可以支持至少1...



10GMPO多芯光纤测试模型

相比较传统使用LC,SC,ST等连接器的双芯光纤,使用MPO连接器可以支持至少12芯光纤,MPO连接器主要使用于预连接光缆。因为MPO光纤存在12芯通道,TIA-568-C.0-2009B.4详细分析了通道极性,针对双工传输,主要有A,B,C三种种极性的连接方式。三种方式都是为了一个共同的目标----创建一个端到端的光收发通道,但是三种方式不能兼容,分别使用不同极性的的连接器和适配器。为了整条链路的兼容性和一致性,尽量考虑使用相同极性的连接器和适配器,比如使用的跳线极性都是A-B,适配器的类型都是KEYUP-KEYUP,否则极性不同会造成使用混乱,容易安装出错,造成链路故障。因此,10G光纤通道里,MPO主干链路的极性主要采用的C类方式(见下图),两端端口按对应数字编号内部互通,光通道采用两两一组,交叉连接,如1---2,2---1,形成全双工的收发通道。左右两端通过MPO转LC的模块盒转成LC接口,然后通过LC跳线连接设备,此种情况主要应用在数据中心高密度布线系统。



被测链路:



两端为MPO-LCA模块(MPO1-12口一一对应LC1-12口)的主干链路示意图

1)设置基准:用1根LC-LC测试跳线连接测试仪的光源输出口(LC)和功率计输入口(LC)。



2)拔出光功率计输入口跳线,接入另一根测试跳线。

3)接入被测光纤(两端为MTP-LC模块盒,中间是MTP-MTP预连接光缆),将LC测试跳线分别接入两端A模块,一端为1口,另一端接2口。



4)记录保存当前被测光纤通道的损耗值,然后将光源端LC跳线更换到A模块的2口,光功率计端LC跳线更换到另一侧A模块的1口,记录并保存,直到完成12个通道的损耗测试。



40G/100GMPO多芯光纤测试技术

2010年,802.3ba颁布的40G/100G的链路标准分别为40GBASE-SR4和100GBASE-SR10;使用MPO的连接器和适配器;OM3光纤的最大传输距离为100米,最大损耗值为1.9dB;OM4光纤的最大传输距离为150米,最大损耗值为1.5dB。40G/100G链路主要用于数据中心大流量数据传输,据第三方统计数据,数据中心88%的主干链路长度不超过100米。因此,基于OM3/OM4的MPO预连接光缆将成为40G/100G链路的首选。之前针对10G光纤链路测试定义的阀值,如LC连接器的阀值为0.75dB,允许存在多个连接器(大于两个),熔接点的阀值为0.3dB已经不再适用。新的40G/100G光纤主干链路将使用预连接光缆,链路中无熔接点和连接器,只需考虑两端MPO连接器的损耗和光缆本身的损耗,尽可能的减少连接器的损耗,确保整条链路的衰减值在新标准的要求之内。

影响40G/100G传输的两个关键因素就是光源和光纤链路损耗。更加严格的损耗要求对传统的LED光源测试方法提出了挑战,原有LED光源的输出功率低,发散角大,连接器损耗大,采用过满注入(OFL—OverFilledLaunch)的方式。而使用VCSEL光源的有限注入法(UFL—UnderFilledLaunch),近场强度的光通道集中在中心范围内,在光纤中心的传输模式较少,发散角较小,有效地解决了LED光源的弊端。但是原有IEEE802.3,ANSI/TIA和ISO/IEC等相关标准只是针对LED光源进行了定义,同时考虑到价格因素,并且不同厂家VCSEL的光功率分布差异较大,因此针对40G/100G的测试的新标准没有采用VCSEL光源进行定义。同样,2006年颁发的ISO/IEC14763-3定义了MPD(ModalPowerDistribution)模态功率分布的方法,虽然通过波导阵列改善了耦合强度,但是同样不能满足40G/100G传输的需要。

2010年10月,ANSI/TIA-526-14-B代替了ANSI/TIA-526-14-A,定义了EF(EncircledFlux)光源环形通量的测试方法,该方法同时定义在IEC61280-4-1标准中。EF通过模式调节器限制多模光源的发射条件,过滤高次模的光信号,使用代用EF控制器的跳线代替原有使用多模卷轴的普通测试跳线(如下图)。当被测光纤连接器和测试设备连接器相同时,可以使用1或3条测试跳线;当被测光纤连接器和测试设备连接器不同时,使用3条测试跳线;测试跳线至少2米,不超过10米。环型通量可将损耗测量偏差从原有±40%降低至±10%,从而降低测量不确定性并提高每次测量的可重复性。



40G/100GMPO光纤测试模型

一条标准的MPO/MTP链路是由两端两根MPO跳线,两个MPO适配器和MPO的预连接主干光缆组成。在TIA-568-C.0-2009B.4里,针对并行多通道传输,给出了A和B两种方式(见下图,Table5)。





为了保障链路的兼容性和单一性,施工和维护比较方便,特别是经常插拔和更换的MPO跳线,在40G/100G布线系统中,方式B将会更多的被采纳。40G和100G的通道数量不同,但是其传输链路模型是相同的,都是使用MPO/MTP接口进行端到端的传输。因此,我们以40G单通道传输为例,测试时需注意预连接光缆和跳线的端口端口类型----有引导针(公头)和无引导针(母头)。

被测MPO链路(母-母):



传统MPO多芯光纤测试模型----采用LC接口的光源和光功率计

1)设置基准:使用3段光纤跳线和2个LC适配器进行基准设置,光源输出口端使用多模卷轴,如下图所示。



2)将中间两个LC适配器间的LC短跳线去掉,分别添加2根LC-MPO(公)的多芯短跳线,连接第1对LC,用于测试MPO第1,2口,如下图所示。



3)将被测MPO光纤链路接入,进行测试,得出MPO第1,2口衰减值并保存。



4)断开两端LC适配器和多芯LC-MPO(公)跳线,按照B类极性进行余下5对链路的衰减测试。

由此可以看出,使用LC接口的光源和光功率进行40G/100G的链路测试,需要MPO转到LC的扇形跳线,光源输出口端接的跳线必须带有多模卷轴,并且每测试一个通道都需要进行基准设置。因此,此方法操作比较复杂,每根MPO链路需测试12次,在大规模测试时,耗费较多时间。

最新MPO多芯光纤测试模型----采用MPO接口的光源和光功率计

目前市场上已经有MPO接口的光纤现场测试设备,带有EF控制光源,可以较好的满足MPO光纤链路的现场测试。采用MPO接口适配器和MPO的基准跳线,设置相应的链路衰减门阀值,可以一次性进行12条链路的基准设置和衰减测试,自动检测MPO光纤的极性并出具报告。需要注意被测MPO链路连接器有无引导针(公/母),即两端都无引导针(母-母),两端都有引导针(公-公),一端有引导针另一端无引导针(公-母)三种情况,选择合适的基准跳线进行基准设置。下面以最常见的两端都无引导针,即两端都是母头的MPO光纤链路模型进行测试。

被测MPO链路(母-母):



1)设置基准:使用1根MPO(公-公)测试跳线连接光源和光功率计,进行基准测试。



2)断开光功率计端跳线,再接入一根MPO(公-公)测试跳线。



3)将被测B类光纤链路接入,进行测试得到光纤极性和12根通道的损耗,保存测试结果。



4)重复步骤2)至3),进行下一根MPO(母-母)光纤链路的测试。

MPO极性验证

MPO光纤跳线的线序类型或者说极性,在标准文件ANSI/TIA-568-C.3关于MPO预端接光缆、MPO配线盒、MPO耦合器的各种线序排列的形式,以及10/40/100G以太网多模光纤传输系统接口形式都有相关说明。Type A即是平行做法,Type B是交叉做法,Type C是线对交叉。当然如果需要知道线序是不是准确可以用MPO线序(极性)测试仪测试。


    关注 光纤测试


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册