5道有趣的物理题,你做过几道?

 

你会做吗?...





你会做吗?

1
有一个半圆柱体横放在水平桌面上,截面的半径为 R 。我们在半圆柱体上放一块木板,试图让它在半圆上保持平衡。假如这块木板非常薄,那么这块木板很容易放稳,即使有些小动静,木板也会自动恢复平衡。但考虑另外一个极端,假如这是一块非常厚非常厚的木板(甚至是大楼一般的形状),它显然不能稳放在这个半圆上。那么,这中间一定会有一个临界点。这个临界点在哪里?换句话说,这个半圆上最多能放稳一块多厚的木板?
把半圆的半径记作 R ,把木板的厚度记作 t 。如果把木板平放在半圆上,其重心的高度就是 R + t/2 。假如这块木板倾斜了一个微小的角度 θ ,那么图中 M’T 的长度等于弧 MT 的长度,即 2πR·(θ/2π) = R·θ 。

此时,木板的重心 G’ 的高度变为了 (t/2)cosθ + (R·θ)sinθ + R·cosθ。为了让木板保持平衡,不会自动往下滑,我们需要让新的重心高度大于原来的重心高度,即 (t/2)cosθ + (R·θ)sinθ + R·cosθ > R + t/2。

解出不等式,再令 θ→0 ,即可得到 t < 2R。也就是说,一旦木板的厚度超过半圆的直径,木板就无法放稳了。
2
假如你面向东边,站在冰面上,鞋底与冰面完全没有摩擦。你能否做出一系列动作,使得自己最后能面向西边站立?
可以。只需要重复“伸臂-挥臂-屈臂”的动作,你的身体便会向反方向转动一点。期待实验党。
3
投一枚硬币,如果是正面,我就去打球,如果是反面,我就去打游戏,如果立起来,我就去学习。不知道大家第一次看到这个笑话时,有没有想过,如果一枚硬币真的有 1/3 的概率正面朝上,有 1/3 的概率反面朝上,有 1/3 的概率立起来,那么这个硬币的半径与厚度满足什么样的关系?
这枚硬币必须满足,把它立起来后,即使倾斜 30 度仍然不倒。这样,硬币直立的“势力范围”才会达到 120 度。因此,硬币的直径应该是厚度的 √3 倍。
4
假设有一个圆锥形的冰山,冰山表面绝对光滑。你打算把一个绳圈套在山尖上,然后沿着绳索爬上去。考虑两个极端情况:如果冰山特别尖,顶角特别小,这个计划自然不成问题;但若冰山特别“肥”,顶角特别大,向下拉绳子后,绳圈将会滑出山尖。这中间一定有一个临界点,也就是绳圈掉不出来的最大顶角。这个顶角是多大?
这是一个非常有趣的问题。问题的本质就是,绳圈在怎样的圆锥面上才存在“被拉紧”的稳定状态。容易想到,绳子被拉紧,意味着绳圈从 A 点出发,将沿最短路径绕过山尖一周,再回到 A 点。如果把圆锥的侧面展开成扇形,绳圈其实就像下面这样(图中的 A 点和 A’ 点在圆锥上是同一个点)。
显然,当这个扇形的顶角小于 180 度时,这样的绳圈才可能存在;而当这个扇形的顶角大于 180 度时,拉紧的绳圈就会滑到山尖外面去。据此不难推出,所求的临界情况就是,圆锥的高与母线的夹角为 30 度。
5
上楼时,人克服重力做功,需要耗费很多能量。但是,在平地上行走时,人并没有做功。那么,为什么我们走路时还要耗费能量呢?

1999 年 3 月的 Scientific American 上说到,其实在步行时,我们也是要克服重力做功的。这是因为,在步行的过程中,人的重心会一上一下地摆动。当两腿一前一后着地时,人的重心偏低;而单腿着地迈步时,人的重心会升高大约 3cm 。我们走路的能量主要就消耗在了这里。

当然,事实上,即使人不走路,光是原地站着,也是要耗费能量的(大约为 80W )。假设人的步行速度是 v ,那么步行所用的能量可以用公式 P = 80W + K·v 大致算出,其中 K·v 就是步行过程中耗费的能量,系数 K 大约为 160N 。

教中学物理最怕聪明孩子,一些古怪的问题常常会让老师也支支吾吾答不上来。初中物理中,有几个最不好给学生解释的事情。走路不做功,为什么还要耗费能量?电流从电厂来又回到电厂去,为什么我们还要支付电费?把装满水的水杯不盖纸片直接倒过来,为什么大气压没有把水支撑起来?拳头打在墙上后将会受到墙给拳头的反作用力,但若拳头挥空了,这个力的反作用力是什么?

你都打算怎么解释?

本文由超级数学建模编辑整理

本文节选自

http://www.matrix67.com/blog/archives/4372转载请在公众号中,回复“转载”
-----这里是数学思维的聚集地------


“超级数学建模”(微信号supermodeling),每天学一点小知识,轻松了解各种思维,做个好玩的理性派。50万数学精英都在关注!


    关注 超级数学建模


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册