名家说肽丨挖掘GLP-1双向调节胰岛激素的深层机制

 



编者按:自GLP-1被发现以来,它已然成为一种多面手激素其多种代谢功能被人们发现,远远超出了作为肠促胰素的经典定义GLP-1的众多有益的靶点作用使其受体激动剂逐渐成为更多新兴的治疗领域如脂肪肝肥胖和神经退行性疾病等的冉冉之星药物时值利拉鲁肽在我国上市10周年,司美格鲁肽新上市之际,我们邀请一众专家,讲述一系列关于GLP-1的故事很多人对GLP-1的认识都始于它对血糖能够进行智能化地双向调节,而双向调节的基础则源自于它既作用于α细胞又作用于β细胞本次名家说肽我们特邀天津医科大学总医院刘铭教授带您探索GLP-1究竟对α细胞和β细胞做了什么,是否存在GLP-1抵抗等感兴趣话题
 GLP-1对β细胞增殖和凋亡的影响


2型糖尿病的患病率与超重年龄增长相关[1]2型糖尿病的进展总是与功能性β细胞的数量下降有关[2-6]在啮齿动物和人类中,β细胞增殖能力的下降又与年龄息息相关[2,7-13]人类β细胞的复制率在儿童期和青春期最高,但随着年龄的增长逐渐下降[2,7,9,12]观察表明,β细胞新生和复制的年龄相关变化可能与2型糖尿病的发展有因果关系[1,8,14]也有人提出了β细胞去分化在2型糖尿病中发挥的作用[15]

GLP-1受体激动剂既可以通过其急性促胰岛素作用改善血糖控制,在某些情况下也可以通过刺激β细胞增殖和抑制凋亡来维持β细胞数量和质量发挥长期血糖改善的作用(图1)[16-19]也有其他研究报道提出不同治疗时间动物年龄动物种属以及饮食构成可能会影响GLP-1受体激动剂提高β细胞复制的能力[16]GLP-1R调控β细胞增殖和凋亡的机制似乎通过胰腺十二指肠同源盒1(Pdx1)信号传导因为Exendin-4在野生型小鼠中刺激β细胞增殖并抑制β细胞凋亡,但在β细胞特异性失活Pdx1的小鼠中没有这种作用[17]GLP-1受体激动剂通过激活cAMP反应元件结合蛋白(CREB)刺激胰岛素受体底物2(Irs2)的表达,从而促进β细胞的生长发挥功能和存活[20]Irs2是IGF1和胰岛素受体酪氨酸激酶的底物,可促进β细胞的生长维持其功能和生存[21]β细胞中Irs2表达的增加可改善肥胖小鼠的胰岛素分泌,并保护链脲佐菌素(STZ)诱导的β细胞破坏[21]Irs2缺乏的小鼠[19]或CREB活性缺乏的转基因小鼠[20],会由于严重的β细胞破坏和β细胞凋亡增强而出现血糖升高Exendin-4通过增强CREB磷酸化来改善Irs2功能[20]在缺乏Irs2的小鼠中,缓慢给予Exendin-4无法防止β细胞的消耗损失[19],这表明,Irs2是介导GLP-1对β细胞增殖/凋亡作用的关键刺激GLP-1R后继发的β细胞增殖通常只在幼龄动物中观察到,而在老年啮齿动物中不存在[22]目前在使用GLP-1受体激动剂治疗的2型糖尿病患者中,尚还没有确切的临床证据提示其延缓糖尿病进展或使β细胞数量增加[23]

图1. GLP-1的代谢作用示意图
包括GLP-1对代谢的直接和间接作用


GLP-1R激动剂的抗凋亡作用已在小鼠[18,24,25]大鼠[26,27]其他一些啮齿动物[24,25]和人[28,29]的细胞系纯化的大鼠β细胞[18]和人体内[30]得到证实使用Exendin-4[18]或GLP-1(7-36酰胺)[25]可减少STZ诱导的β细胞凋亡,使用Exendin-4可减少STZ诱导的高血糖[18]而在GLP-1受体缺乏的小鼠中,STZ诱导的β细胞凋亡过程会加速[18]在离体大鼠β细胞中,用Exendin-4治疗可降低促凋亡细胞因子(如IL1bTNFα干扰素γ)治疗引起的凋亡效应[18]在小鼠胰腺βTC-6细胞系中,利拉鲁肽通过刺激抗凋亡信号机制提高β细胞存活率,这种抗凋亡信号包括刺激磷脂酰肌醇3-激酶(PI3激酶)依赖的AKT磷酸化,导致促凋亡蛋白BAD失活和FoxO1沉默[24]

Alvin Powers小组最近建立了一种评估人β细胞在体内复制的创新方法[31]在这个模型中,人体β细胞被移植到瘦型糖尿病免疫缺陷(NOD scid γ)小鼠的肾包膜下利用这个模型,发现Exendin-4能增加幼年人胰岛的β细胞增殖,但不能增加成年人胰岛的β细胞增殖[31]值得注意的是,Eexendin-4诱导的β细胞增殖的年龄依赖性下降与GLP-1R表达的变化无关,同时提示Exendin-4保存了对成年胰岛的促胰岛素分泌功能[31]然而,仅在未成年人胰岛而非成人胰岛中,Exendin-4可刺激钙调磷酸酶/NFAT信号,并增强增殖促进因子(如NFATC1FOXM1和CCNA1)的表达[31]总的来说,这些数据表明,β细胞增殖机制对GLP-1R激动剂的敏感性随着年龄的增长而下降[31]
GLP-1对胰高血糖素分泌的影响(对α细胞的作用)
GLP-1通过抑制胰高血糖素分泌来降低血糖(图1)[32-34]GLP-1对胰高血糖素分泌的抑制作用已在小鼠[35]犬[36]人[33,37,38]体内,大鼠[39,44]犬[44]猪[32]的离体灌注胰腺和完整的离体小鼠胰岛[40]中得到证实对2型糖尿病患者的钳夹研究表明,GLP-1抑制胰高血糖素分泌与GLP-1刺激胰岛素释放对降低血糖同样重要[45]

GLP-1抑制胰高血糖素分泌的机制比较复杂在离体灌注猪胰腺中,GLP-1剂量依赖性地刺激生长抑素的分泌[32],生长抑素是胰高血糖素分泌的强效抑制因子[41]生长抑素通过旁分泌机制抑制胰高血糖素的分泌,当被阻断时,可刺激离体的大鼠胰岛胰高血糖素的释放[42,43]在离体灌注大鼠胰腺中,联合输注GLP-1和特异性生长抑素受体2(SSTR2)拮抗剂(PRL-2903)可消除GLP-1对胰高血糖素分泌的抑制作用[39]虽然这些数据表明生长抑素在介导GLP-1抑制胰高血糖素分泌中发挥了重要作用,但用SSTR2拮抗剂CYN154806处理离体小鼠胰岛并不能完全抑制GLP-1抑制胰高血糖素分泌的能力[40]这意味着GLP-1对胰高血糖素分泌的抑制并不完全依赖于生长抑素,GLP-1对胰高血糖素分泌的影响还可以通过forskolin诱导的cAMP变化来模拟用低浓度forskolin(1~10 nM)处理离体小鼠胰岛可抑制高达60%的胰高血糖素分泌,而高浓度forskolin(0.1~10 μM)可刺激胰高血糖素释放[40]值得注意的是,PKA抑制剂8-Br-Rp-cAMPS减弱了GLP-1对胰高血糖素分泌的抑制作用,提示GLP-1对胰高血糖素分泌的抑制依赖于PKA[40]在完整的小鼠胰岛中,用ω-conotoxin毒素阻断N-型Ca2+通道而非用硝苯地平阻断L-型Ca2+通道,可以消除低血糖(1 mM)对胰高血糖素分泌的刺激,并减弱GLP-1介导的抑制作用总之,这些数据表明,GLP-1除了通过生长抑素发挥旁分泌作用外,GLP-1还可能通过PKA依赖的N-型Ca2+通道活性调节抑制α细胞分泌胰高血糖素[40]

GLP-1也可通过对β细胞的促胰岛素作用间接抑制胰高血糖素的分泌正如近期的综述文章[34]所述,GLP-1既刺激δ细胞分泌生长抑素,又刺激β细胞分泌胰岛素胰淀素锌和γ氨基丁酸(GABA),所有这些都会抑制胰高血糖素的释放在α-细胞来源的IN-R1-G9细胞系中,胰岛素通过激活PI3K来抑制胰高血糖素的释放WortMannin抑制PI3K可以抵消胰岛素抑制胰高血糖素分泌的能力[46]在α细胞中,胰岛素进一步增强GABA-A受体的转运[47],而β细胞释放的GABA增强了葡萄糖对胰高血糖素分泌的抑制[48]胰岛素在β细胞分泌颗粒中与Zn2+形成共价体[49,50],Zn2+在高血糖条件下与胰岛素共分泌[51,52]Zn2+以旁分泌的方式作用于α细胞,抑制胰高血糖素的分泌[52,53]有趣的是,在STZ致糖尿病大鼠中,阻断胰腺内输注Zn2+可加速胰高血糖素的分泌,而无Zn2+共存的胰岛素做不到这点这表明Zn2+-胰岛素共价体抑制胰高血糖素分泌的主要刺激因素是Zn2+而不是胰岛素[53]与此同时,Zn2+处理的α-TC细胞使胰高血糖素的分泌受到抑制[54]在离体的大鼠α细胞完整的胰岛和灌注的大鼠胰腺中显示,Zn2+通过打开KATP通道并抑制α细胞电活动抑制丙酮酸诱导的胰高血糖素分泌[52]综上所述,β细胞中与胰岛素共同分泌的Zn2+在抑制胰高血糖素释放中发挥着重要作用[52,53]与胰岛素共同分泌的胰淀素也会影响α细胞的胰高血糖素释放在大鼠中,胰淀素剂量依赖性地抑制精氨酸介导的胰高血糖素分泌[55],而胰淀素信号的药理学抑制会增强胰高血糖素分泌[56]普兰林肽(Pramlintide)是一种合成的胰淀素受体激动剂,通过抑制餐后胰高血糖素分泌和抑制胃排空来改善糖尿病患者的血糖控制[57,58]有趣的是,胰淀素在离体胰岛[59]和灌注大鼠胰腺[60,61]中均不影响胰高血糖素的分泌,这表明胰淀素对胰高血糖素的调节非细胞自主值得注意的是,在正常生理条件下,GLP-1可能通过刺激β细胞而影响胰高血糖素的分泌,而在1型糖尿病中GLP-1也可以抑制胰高血糖素的释放,进一步也证明GLP-1对胰高血糖素分泌的抑制并非完全依赖于β细胞[62]

综上所述,GLP-1能有效抑制胰高血糖素的分泌一部分原因是旁分泌刺激作用使胰岛分泌生长抑素,其他可能还有胰岛素Zn2+GABA和胰淀素,以及自身葡萄糖浓度升高所发挥的作用但有研究报道当GLP-1受体在α细胞小亚单位(约10%)中缺乏[63]或表达非常有限[64]时,用GLP-1处理离体的大鼠α细胞非但不会抑制反而会增强胰高血糖素的释放[65]GLP-1也可能直接抑制胰高血糖素的分泌,因为与野生型对照相比,α细胞特异性GLP-1R敲除小鼠非空腹胰高血糖素水平升高,而雌性α细胞特异性GLP-1R敲除小鼠在外周给糖后胰高血糖素分泌增加,表现出轻度葡萄糖不耐受[66]在使用胰岛素受体拮抗剂S961或生长抑素受体2拮抗剂CYN154806处理的离体人胰岛中,胰高血糖素照常分泌,进一步支持GLP-1直接抑制胰高血糖素分泌[67]因此,GLP-1可能是通过内分泌机制也可能直接对胰高血糖素的分泌影响
什么情况下GLP-1刺激胰岛素分泌的反应能力受损
双胞胎系列研究所示,GLP-1刺激胰岛素分泌的估计遗传率为0.53[68]第一个GLP-1诱导胰岛素分泌的基因背景受影响的证据是转录因子7-like 2(TCF7L2)的变异的发现[69]非糖尿病个体的经典高血糖钳夹过程中输注GLP-1,可导致SNP rs7903146 TCF7L2风险等位基因携带者胰岛素分泌显著减少其他研究也证实类似情况即GLP-1治疗后胰岛素分泌减少[70-72]

除了TCF7L2之外,已经发现了其他几个与GLP-1诱导的胰岛素分泌减少相关的基因位点,包括GLP-1R位点[73],wolfram综合征1(WFS1)[74]和糜蛋白酶原B1/2(CTRB1/2)[75]TCF7L2基因变异导致GLP-1反应性降低的分子机制最有可能包括WNT信号通路的改变以及相关的β细胞增殖和胰岛素基因表达[76]胰岛素基因核受体亚家族4组A成员3(Nor-1)转录调节因子的遗传变异能够挽救TCF7L2介导的GLP-1抵抗[77]胰岛素原转化受损可能是TCF7L2导致GLP-1疗效降低的另一机制[78]肠促胰岛素效应减弱的另一个可能的机制是GLP-1R和GIPR在β细胞上表达的TCF7L2依赖性受抑[79]WFS1变异与肠促胰岛素作用受损之间的联系可能是由于内质网稳态的改变,从而导致β细胞功能障碍[76]近来,利用非靶向整合基因组学方法,一组包含与GLP-1刺激的胰岛素分泌相关变异的基因被描述,这些基因同时具有在β细胞内理化相互作用的潜力,并丰富了胰岛素分泌的重要途径[80]最后,GLP-1对胰岛素分泌的影响取决于个体的代谢状态在高血糖和一些糖尿病糖尿病前期和胰岛素抵抗患者中,肠促胰岛素作用也可能降低[81]

总之,肠促胰岛素对胰岛素分泌的影响减弱与遗传和代谢改变有关高血糖和基因决定的GLP-1抵抗的存在都可以加重GLP-1刺激的胰岛素分泌能力受损[82]

专家寄语
刘铭教授 天津医科大学总医院
近年来,越来越多的临床和基础研究显示,在2型糖尿病管理过程中不仅要关注胰岛β细胞和胰岛素,同时要关注胰岛中其它细胞如α细胞δ细胞,下丘脑管理能量摄入和代谢的神经元,肠道分泌肠促激素的L细胞K细胞等,所有这些组织器官细胞间的相互协调在能量代谢,血糖血脂管理中都发挥着重要作用肠道分泌的GLP-1在肠胰腺下丘脑不同组织当中起着协调员的作用近年来,越来越多的循证医学证据显示,GLP-1R激动剂在2型糖尿病管理中心的作用越来越重要因为GLP-1R激动剂不仅具有良好的降糖作用,对于糖尿病患者体重管理心血管结局改善慢性肾脏病结局改善都有获益证据我们也相信通过对糖尿病发病机制的进一步了解,对如糖尿病心血管疾病糖尿病慢性肾脏病等慢性并发症病理生理过程的理解,不久的将来我们或能看到更多针对不同治疗靶点的药物出现希望通过这些药物/管理模式的改善,在管理血糖代谢体重的基础上提高糖尿病患者的生存质量,减少由糖尿病带来的慢性并发症,最终使患者通过代谢异常管理而获益

参考文献

(上下滑动可查看)

[1] Fujitani, Y. 2018. How does glucagon-like peptide 1 stimulate human beta-cell proliferation? A lesson from islet graft experiments. J Diabetes Investig 9:1255-1257.

[2] Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., Butler, P.C. 2003. Betacell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102-110.

[3] Maclean, N., Ogilvie, R.F. 1955. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367-376.

[4] Rahier, J., Guiot, Y., Goebbels, R.M., Sempoux, C., Henquin, J.C. 2008. Pancreatic betacell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10 Suppl 4:32- 42.

[5] Saito, K., Takahashi, T., Yaginuma, N., Iwama, N. 1978. Islet morphometry in the diabetic pancreas of man. Tohoku J Exp Med 125:185-197.

[6] Westermark, P., Wilander, E. 1978. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 15:417-421.

[7] Butler, P.C., Meier, J.J., Butler, A.E., Bhushan, A. 2007. The replication of beta cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab 3:758-768.

[8] Cnop, M., Hughes, S.J., Igoillo-Esteve, M., Hoppa, M.B., Sayyed, F., van de Laar, L., et al. 2010. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53:321-330.

[9] Meier, J.J., Butler, A.E., Saisho, Y., Monchamp, T., Galasso, R., Bhushan, A., et al. 2008. Beta-cell replication is the primary mechanism subserving the postnatal expansion of betacell mass in humans. Diabetes 57:1584-1594.

[10] Chen, H., Gu, X., Liu, Y., Wang, J., Wirt, S.E., Bottino, R., et al. 2011. PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 478:349-355.

[11] Chen, H., Gu, X., Su, I.H., Bottino, R., Contreras, J.L., Tarakhovsky, A., et al. 2009. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and

regeneration in diabetes mellitus. Genes Dev 23:975-985.

[12] Gregg, B.E., Moore, P.C., Demozay, D., Hall, B.A., Li, M., Husain, A., et al. 2012. Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97:3197-3206.

[13] Teta, M., Long, S.Y., Wartschow, L.M., Rankin, M.M., Kushner, J.A. 2005. Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557-2567.

[14] Bonner-Weir, S. 2001. beta-cell turnover: its assessment and implications. Diabetes 50 Suppl 1:S20-24.

[15] Cinti, F., Bouchi, R., Kim-Muller, J.Y., Ohmura, Y., Sandoval, P.R., Masini, M., et al. 2016. Evidence of beta-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab 101:1044-1054.

[16] Arakawa, M., Ebato, C., Mita, T., Hirose, T., Kawamori, R., Fujitani, Y., et al. 2009. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem Biophys Res Commun 390:809-814.

[17] Li, Y., Cao, X., Li, L.X., Brubaker, P.L., Edlund, H., Drucker, D.J. 2005. beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54:482-491.

[18] Li, Y., Hansotia, T., Yusta, B., Ris, F., Halban, P.A., Drucker, D.J. 2003. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 278:471-478.

[19] Park, S., Dong, X., Fisher, T.L., Dunn, S., Omer, A.K., Weir, G., et al. 2006. Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 281:1159-1168.

[20] Jhala, U.S., Canettieri, G., Screaton, R.A., Kulkarni, R.N., Krajewski, S., Reed, J., et al. 2003. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575-1580.

[21] White, M.F. 2003. Insulin signaling in health and disease. Science 302:1710-1711.

[22] Tschen, S.I., Dhawan, S., Gurlo, T., Bhushan, A. 2009. Age-dependent decline in betacell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58:1312- 1320.

[23] Smits, M.M., Tonneijck, L., Muskiet, M.H., Kramer, M.H., Pieters-van den Bos, I.C., Vendrik, K.E., et al. 2017. Pancreatic Effects of Liraglutide or Sitagliptin in Overweight Patients With Type 2 Diabetes: A 12-Week Randomized, Placebo-Controlled Trial. Diabetes Care 40:301-308.

[24] Kapodistria, K., Tsilibary, E.P., Kotsopoulou, E., Moustardas, P., Kitsiou, P. 2018. Liraglutide, a human glucagon-like peptide-1 analogue, stimulates AKT-dependent survival signalling and inhibits pancreatic beta-cell apoptosis. J Cell Mol Med 22:2970-2980.

[25] Sun, L., Dai, Y., Wang, C., Chu, Y., Su, X., Yang, J., et al. 2015. Novel Pentapeptide GLP-1 (32-36) Amide Inhibits beta-Cell Apoptosis In Vitro and Improves Glucose Disposal in Streptozotocin-Induced Diabetic Mice. Chem Biol Drug Des 86:1482-1490.

[26] Fang, Y., Jiang, D., Wang, Y., Wang, Q., Lv, D., Liu, J., et al. 2018. Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Dev Res 79:249-259.

[27] Li, D., Shang, Y., Shen, C., Li, L., Zhao, D., Ma, L., et al. 2018. Effects of Exendin-4 on pancreatic islets function in treating hyperglycemia post severe scald injury in rats. J Trauma Acute Care Surg 85:1072-1080.

[28] Khalilnezhad, A., Taskiran, D. 2018. Protective effects of glucagon-like peptide-1 (GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity. Int J Neurosci:1-24.

[29] Liao, P., Yang, D., Liu, D., Zheng, Y. 2017. GLP-1 and Ghrelin Attenuate High Glucose/High Lipid-Induced Apoptosis and Senescence of Human Microvascular Endothelial Cells. Cell Physiol Biochem 44:1842-1855.

[30] Farilla, L., Bulotta, A., Hirshberg, B., Li Calzi, S., Khoury, N., Noushmehr, H., et al. 2003. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149-5158.

[31] Dai, C., Hang, Y., Shostak, A., Poffenberger, G., Hart, N., Prasad, N., et al. 2017. Agedependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. J Clin Invest 127:3835-3844.

[32] Orskov, C., Holst, J.J., Nielsen, O.V. 1988. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009-2013.

[33] Willms, B., Werner, J., Holst, J.J., Orskov, C., Creutzfeldt, W., Nauck, M.A. 1996. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 81:327-332.

[34] Drucker, D.J. 2018. Mechanisms of Action and Therapeutic Application of Glucagonlike Peptide-1. Cell Metab 27:740-756.

[35] Fridolf, T., Bottcher, G., Sundler, F., Ahren, B. 1991. GLP-1 and GLP-1(7-36) amide: influences on basal and stimulated insulin and glucagon secretion in the mouse. Pancreas 6:208-215.

[36] Freyse, E.J., Becher, T., El-Hag, O., Knospe, S., Goke, B., Fischer, U. 1997. Blood glucose lowering and glucagonostatic effects of glucagon-like peptide I in insulin-deprived diabetic dogs. Diabetes 46:824-828.

[37] Hare, K.J., Knop, F.K., Asmar, M., Madsbad, S., Deacon, C.F., Holst, J.J., et al. 2009.

Preserved inhibitory potency of GLP-1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4679-4687.

[38] Plamboeck, A., Veedfald, S., Deacon, C.F., Hartmann, B., Vilsboll, T., Knop, F.K., et al. 2015. The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1. Am J Physiol Regul Integr Comp Physiol 309:R544-551.

[39] de Heer, J., Rasmussen, C., Coy, D.H., Holst, J.J. 2008. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51:2263-2270.

[40] De Marinis, Y.Z., Salehi, A., Ward, C.E., Zhang, Q., Abdulkader, F., Bengtsson, M., et al. 2010. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab 11:543-553.

[41] Gerich, J.E., Lorenzi, M., Schneider, V., Karam, J.H., Rivier, J., Guillemin, R., et al. 1974. Effects of somatostatin on plasma glucose and glucagon levels in human diabetes mellitus. Pathophysiologic and therapeutic implications. N Engl J Med 291:544-547.

[42] Barden, N., Cote, J.P., Lavoie, M., Dupont, A. 1978. Secretion of somatostatin by rat islets of Langerhans and gastric mucosa and a role for pancreatic somatostatin in the regulation of glucagon release. Metabolism 27:1215-1218.

[43] Barden, N., Lavoie, M., Dupont, A., Cote, J., Cote, J.P. 1977. Stimulation of glucagon release by addition of anti-stomatostatin serum to islets of Langerhans in vitro. Endocrinology 101:635-638.

[44] Kawai, K., Suzuki, S., Ohashi, S., Mukai, H., Ohmori, H., Murayama, Y., et al. 1989. Comparison of the effects of glucagon-like peptide-1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases. Endocrinology 124:1768-1773.

[45] Hare, K.J., Vilsboll, T., Asmar, M., Deacon, C.F., Knop, F.K., Holst, J.J. 2010. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765-1770.

[46] Kaneko, K., Shirotani, T., Araki, E., Matsumoto, K., Taguchi, T., Motoshima, H., et al. 1999. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-R1-G9 cells. Diabetes Res Clin Pract 44:83-92.

[47] Xu, E., Kumar, M., Zhang, Y., Ju, W., Obata, T., Zhang, N., et al. 2006. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 3:47-58.

[48] Wendt, A., Birnir, B., Buschard, K., Gromada, J., Salehi, A., Sewing, S., et al. 2004. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 53:1038-1045.

[49] Blundell, T.L., Cutfield, J.F., Dodson, E.J., Dodson, G.G., Hodgkin, D.C., Mercola, D.A. 1972. The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb Symp Quant

Biol 36:233-241.

[50] Blundell, T.L., Cutfield, J.F., Dodson, G.G., Dodson, E., Hodgkin, D.C., Mercola, D. 1971. The structure and biology of insulin. Biochem J 125:50P-51P.

[51] Gee, K.R., Zhou, Z.L., Qian, W.J., Kennedy, R. 2002. Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc 124:776-778.

[52] Franklin, I., Gromada, J., Gjinovci, A., Theander, S., Wollheim, C.B. 2005. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808-1815.

[53] Zhou, H., Zhang, T., Harmon, J.S., Bryan, J., Robertson, R.P. 2007. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56:1107-1112.

[54] Gyulkhandanyan, A.V., Lee, S.C., Bikopoulos, G., Dai, F., Wheeler, M.B. 2006. The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361-9372.

[55] Gedulin, B.R., Rink, T.J., Young, A.A. 1997. Dose-response for glucagonostatic effect of amylin in rats. Metabolism 46:67-70.

[56] Gedulin, B.R., Jodka, C.M., Herrmann, K., Young, A.A. 2006. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept 137:121-127.

[57] Levetan, C., Want, L.L., Weyer, C., Strobel, S.A., Crean, J., Wang, Y., et al. 2003. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26:1-8.

[58] Nyholm, B., Orskov, L., Hove, K.Y., Gravholt, C.H., Moller, N., Alberti, K.G., et al. 1999. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 48:935-941.

[59] Broderick, C.L., Brooke, G.S., DiMarchi, R.D., Gold, G. 1991. Human and rat amylin have no effects on insulin secretion in isolated rat pancreatic islets. Biochem Biophys Res Commun 177:932-938.

[60] Inoue, K., Hiramatsu, S., Hisatomi, A., Umeda, F., Nawata, H. 1993. Effects of amylin on the release of insulin and glucagon from the perfused rat pancreas. Horm Metab Res

25:135-137.

[61] Silvestre, R.A., Peiro, E., Degano, P., Miralles, P., Marco, J. 1990. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul Pept 31:23-31.

[62] Creutzfeldt, W.O., Kleine, N., Willms, B., Orskov, C., Holst, J.J., Nauck, M.A. 1996. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19:580-586.

[63] Segerstolpe, A., Palasantza, A., Eliasson, P., Andersson, E.M., Andreasson, A.C., Sun, X.,et al. 2016. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab 24:593-607.

[64] Richards, P., Parker, H.E., Adriaenssens, A.E., Hodgson, J.M., Cork, S.C., Trapp, S., et al. 2014. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63:1224-1233.

[65] Dunning, B.E., Foley, J.E., Ahren, B. 2005. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700-1713.

[66] Zhang, Y., Parajuli, K.R., Fava, G.E., Gupta, R., Xu, W., Nguyen, L.U., et al. 2019. GLP-1 Receptor in Pancreatic alpha-Cells Regulates Glucagon Secretion in a Glucose-Dependent Bidirectional Manner. Diabetes 68:34-44.

[67] Ramracheya, R., Chapman, C., Chibalina, M., Dou, H., Miranda, C., Gonzalez, A., et al. 2018. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca(2+) channels. Physiol Rep 6:e13852.

[68] Simonis-Bik, A.M., Eekhoff, E.M., de Moor, M.H., Kramer, M.H., Boomsma, D.I., Heine,R.J., et al. 2009. Genetic influences on the insulin response of the beta cell to differentsecretagogues. Diabetologia 52:2570-2577.

[69] Schafer, S.A., Tschritter, O., Machicao, F., Thamer, C., Stefan, N., Gallwitz, B., et al. 2007. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 50:2443-2450.

[70] Lyssenko, V., Lupi, R., Marchetti, P., Del Guerra, S., Orho-Melander, M., Almgren, P., et al. 2007. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155-2163.

[71] Pilgaard, K., Jensen, C.B., Schou, J.H., Lyssenko, V., Wegner, L., Brons, C., et al. 2009. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52:1298-1307.

[72] Villareal, D.T., Robertson, H., Bell, G.I., Patterson, B.W., Tran, H., Wice, B., et al. 2010. TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 59:479-485.

[73] Sathananthan, A., Man, C.D., Micheletto, F., Zinsmeister, A.R., Camilleri, M., Giesler, P.D., et al. 2010. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care 33:2074-2076.

[74] Schafer, S.A., Mussig, K., Staiger, H., Machicao, F., Stefan, N., Gallwitz, B., et al. 2009. A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion. Diabetologia 52:1075-1082.

[75] t Hart, L.M., Fritsche, A., Nijpels, G., van Leeuwen, N., Donnelly, L.A., Dekker, J.M., et al. 2013. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 62:3275-3281.

[76] Mussig, K., Staiger, H., Machicao, F., Haring, H.U., Fritsche, A. 2010. Genetic variants affecting incretin sensitivity and incretin secretion. Diabetologia 53:2289-2297.

[77] Ordelheide, A.M., Gerst, F., Rothfuss, O., Heni, M., Haas, C., Thielker, I., et al. 2013. Nor- 1, a novel incretin-responsive regulator of insulin genes and insulin secretion. Mol Metab 2:243-255.

[78] Kirchhoff, K., Machicao, F., Haupt, A., Schafer, S.A., Tschritter, O., Staiger, H., et al. 2008. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597-601.

[79] Shu, L., Matveyenko, A.V., Kerr-Conte, J., Cho, J.H., McIntosh, C.H., Maedler, K. 2009. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 18:2388- 2399.

[80] Gudmundsdottir, V., Pedersen, H.K., Allebrandt, K.V., Brorsson, C., van Leeuwen, N., Banasik, K., et al. 2018. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS One 13:e0189886.

[81] Herzberg-Schafer, S., Heni, M., Stefan, N., Haring, H.U., Fritsche, A. 2012. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab 14 Suppl 3:85-90.

[82] Heni, M., Ketterer, C., Thamer, C., Herzberg-Schafer, S.A., Guthoff, M., Stefan, N., et al. 2010. Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion. Diabetes 59:3247-3252.



最新国际糖尿病读者专属微信交流群建好了,快快加入吧!扫描左边国际糖尿病小助手二维码(微信号:guojitnb),回复国际糖尿病读者,ta会尽快拉您入群滴!



(来源:国际糖尿病编辑部)



版权声明
版权属国际糖尿病所有欢迎个人转发分享其他任何媒体网站未经授权,禁止转载


点分享



点收藏



点点赞



点在看


    关注 idiabetes


微信扫一扫关注公众号

0 个评论

要回复文章请先登录注册